Skip to main content

Basic Physics of QED

  • Chapter
  • First Online:
New Aspects of Quantum Electrodynamics
  • 1003 Accesses

Abstract

Basic physics of quantum electrodynamics (QED) is reviewed in comparison with quantum mechanics. Under external source of electromagnetic fields, charged particles can be accelerated by the Lorentz force. The Lorentz force is compensated by tension at any point of the Minkowski space-time. The tension is given by the divergence of internal self-stress tensor. The antisymmetric component of the stress tensor leads to spin torque and drives time evolution of electron spin. This is called the quantum electron spin vorticity principle. The spin torque can be compensated by a force called zeta force.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • N.W. Ashcroft, N.D. Mermin, Solid State Physics (Thomson Learning, New York, 1976) Chapter 1

    Google Scholar 

  • V. Bargmann, E.P. Wigner, Proc. Natl. Acad. Sci. U. S. A. 34, 211 (1948)

    Article  CAS  Google Scholar 

  • V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, Quantum Electrodynamics (Butterworth-Heinemann, Oxford, 1982)

    Google Scholar 

  • R.A. Beth, Phys. Rev. 48, 471 (1935)

    Article  Google Scholar 

  • N.N. Bogoliubov, A.A. Logunov, L.T. Todorov, Introduction to Axionatic Quantum Field Theory (Benjamin, New York, 1975)

    Google Scholar 

  • C. Bosvieux, J. Friedel, J. Phys. Chem. Solids 23, 123 (1962)

    Article  CAS  Google Scholar 

  • R.P. Crease, The Prism and the Pendulum: The Ten Most Beautiful Experiments in Science (Random House, New York, 2006)

    Google Scholar 

  • K. Doi, K. Iguchi, K. Nakamura, A. Tachibana, Phys. Rev. B 67, 115124(14) (2003)

    Article  Google Scholar 

  • K. Doi, K. Nakamura, A. Tachibana, 2006 International Workshop on Nano CMOS (IEEE 2006) pp. 209–235

    Google Scholar 

  • P. Fara, Phil. Trans. R. Soc. A 373, 20140213 (2015)

    Article  Google Scholar 

  • R.P. Feynman, R.B. Leighton, M. Sands, Quantum mechanics, in The Feynman Lectures on Physics, Vol. III (Addison-Wesley, Reading, 1972), Chapter 1, 1–1

    Google Scholar 

  • M. Fukuda, M. Senami, A. Tachibana, in Advances in Quantum Methods and Applications in Chemistry, Physics, and Biology Progress in Theoretical Chemistry and Physics, ed by M. Hotokka, E. J. Brändas, J. Maruani, G. D. Barrio. (Springer, New York, 2013) Chap.7, pp.131–139

    Google Scholar 

  • M. Fukuda, K. Soga, M. Senami, A. Tachibana, Int. J. Quant. Chem. 116, 920 (2016a)

    Article  CAS  Google Scholar 

  • M. Fukuda, K. Soga, M. Senami, A. Tachibana, Phys. Rev. A 93, 012518(10) (2016b)

    Article  Google Scholar 

  • M. Fukuda, K. Ichikawa, M. Senami, A. Tachibana, AIP Adv. 6, 025108(8) (2016c)

    Article  Google Scholar 

  • W. Greiner, J. Reinhardt, Quantum Electrodynamics (Springer, Berlin, 2009)

    Google Scholar 

  • R. Haag, Local Quantum Physics – Fields, Particled, Algebras, 2nd edn. (Springer, New York, 1992)

    Book  Google Scholar 

  • W. Heitler, The Quantum Theory of Radiation, 3rd edn. (Oxford University, Oxford, 1954)

    Google Scholar 

  • Y. Ikeda, M. Senami, A. Tachibana, AIP Adv. 2, 042168(16) (2012)

    Article  Google Scholar 

  • Y. Ikeda, M. Senami, A. Tachibana, Trans. Mat. Res. Soc. Japan 38, 397 (2013)

    Article  CAS  Google Scholar 

  • C. Itzykson, J.B. Zuber, Quantum Field Theory (McGraw-Hill, New York, 1980)

    Google Scholar 

  • J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1998)

    Google Scholar 

  • L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields, 6th edn. (Nauka, Moscow, 1973), translated into English in Course of Theoretical Physics Series, Vol. 2, 4th edn. (Pergamon, Oxford, 1975)

    Google Scholar 

  • L.D. Landau, E.M. Lifshitz, in The Classical Theory of Fields. Course of Theoretical Physics Series, vol. 2, 4th edn. (Pergamon, Oxford, 1975)

    Google Scholar 

  • U. Leonhardt, Nature 444, 823 (2006)

    Article  CAS  Google Scholar 

  • A. Lodder, J.P. Dekker, in Stress Induced Phenomena in Metallization, ed by H. Okabayashi, S. Shingubara, P. S. Ho. (American Institute of Physics, New York, 1998), pp. 315–328

    Chapter  Google Scholar 

  • C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (W. H. Freeman, San Fransisco, 1973)

    Google Scholar 

  • N. Nakanishi, I. Ojima, Covariant Operator Formalism of Gauge Theories and Quantum Gravity (World Scientific, Singapore, 1990)

    Book  Google Scholar 

  • H. Nozaki, M. Senami, K. Ichikawa, A. Tachibana, Jpn. J. Apl. Phys. 55, 08PE01(8) (2016)

    Article  Google Scholar 

  • W. Pauli, Handbuch der Physik, Band XXIV, Teil 1 (Springer, Berlin, 1933), pp. 83–272; reprinted in Handbuch der Physik (Springer, Berlin, 1958), Vol. 5, Part1; translated into English in General Principles of Quantum Mechanics (Springer, Berlin, 1980)

    Google Scholar 

  • M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Westview, Boulder, 1995)

    Google Scholar 

  • W. Poyser, Magnetism and Electricity: A Manual for Students in Advanced Classes (Longmans, Green, & Co., New York, 1892), p. 285

    Google Scholar 

  • T. Rothman, Everything’s Relative and Other Fables in Science and Technology (Wiley, New York, 2003)

    Google Scholar 

  • L.H. Ryder, Quantum Field Theory (Cambridge University, Cambridge, 1985)

    Google Scholar 

  • J.J. Sakurai, Advnced Quantum Mechanics (Addison-Wesley, New York, 1967)

    Google Scholar 

  • E. Schödinger, Ann. Phys. (Leipzig) 82, 265 (1927)

    Article  Google Scholar 

  • A. Tachibana, J. Chem. Phys. 115, 3497–3518 (2001)

    Article  CAS  Google Scholar 

  • A. Tachibana, in Stress Induced Phenomena in Metallization, ed by S. P. Baker. (American Institute of Physics, New York, 2002), pp. 105–116

    Google Scholar 

  • A. Tachibana, in Fundamental Perspectives in Quantum Chemistry: A Tribute to the Memory of Per-Olov Löwdin, ed by E. Brändas, E. Kryachko, vol 2 (Kluwer, Dordrecht, 2003), pp. 211–239

    Google Scholar 

  • A. Tachibana, Int. J. Quant. Chem. 100, 981 (2004)

    Article  CAS  Google Scholar 

  • A. Tachibana, J. Mol. Struct. (THEOCHEM) 943, 138 (2010)

    Article  CAS  Google Scholar 

  • A. Tachibana, J. Math. Chem. 50, 669 (2012)

    Article  CAS  Google Scholar 

  • A. Tachibana, in Concepts and Methods in Modern Theoretical Chemistry: Electronic Structure and Reactivity (Atoms, Molecules, and Clusters), ed by S. K. Ghosh, P. K. Chattaraj. (Taylor & Francis/CRC Press, New York, 2013) , Chap.12, pp. 235–251

    Google Scholar 

  • A. Tachibana, J.Comput.Chem.Jpn. 13, 18 (2014)

    Article  Google Scholar 

  • A. Tachibana, J. Math. Chem. 53, 1943 (2015)

    Article  CAS  Google Scholar 

  • A. Tachibana, J. Math. Chem. 54, 661 (2016)

    Article  CAS  Google Scholar 

  • V.H. Tetrode, Z. Phys. 49, 858 (1928)

    Article  Google Scholar 

  • D.M. Volkov, Z. Phys. 94, 250 (1935)

    Article  Google Scholar 

  • S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972)

    Google Scholar 

  • S. Weinberg, The Quantum Theory of Fields I-III (Cambridge University, Cambridge, 1995)

    Book  Google Scholar 

  • E.P. Wigner, Ann. Math. 40, 149 (1939)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Tachibana, A. (2017). Basic Physics of QED. In: New Aspects of Quantum Electrodynamics. Springer, Singapore. https://doi.org/10.1007/978-981-10-3132-8_1

Download citation

Publish with us

Policies and ethics