Skip to main content

Phytoremediation and Bioenergy Production Efficiency of Medicinal and Aromatic Plants

Abstract

The cultivation of aromatic and medicinal plants for their direct as well as indirect uses is a common practice from ancient time. There are several medicinal plants which have not only the tolerance ability against the environmental contaminants but also may extract them from the polluted sites. Essential oil-bearing crops like peppermint (Mentha sps.), tulsi (Ocimum basilicum L.), industrial hemp (Cannabis sativa L.), Cymbopogon citratus etc., have been found to bear substantial efficiency to accumulate toxic metals e.g., Cd, As, Ni, Cu, Fe, etc. Generally the process used to extract the essential oil is steam distillation which has the least chance to allow the contaminants to move in oil. After harvesting the oil, residual biomass may be utilized for energy production. This energy may be produced by direct burning of biomass or production of biogas through the gasification of biomass. This integrated approach will not only reduce the cost of petroleum oil but also will help to develop a sustainable model which will help in mitigation of many environmental issues like reduction of greenhouse gases, pollution alleviation etc.

Keywords

  • Biomass
  • Bioenergy
  • Medicinal plants
  • Phytoremediation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-10-3084-0_11
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-981-10-3084-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 11.1
Fig. 11.2
Fig. 11.3
Fig. 11.4
Fig. 11.5
Fig. 11.6
Fig. 11.7
Fig. 11.8
Fig. 11.9

References

  • Abdu A, Aderis N, Abdul-Hamid H, Majid NM, Jusop S, Karam DS, Ahmad K (2011) Using Orthosiphon stamineus B. for phytoremediation of heavy metals in soils amended with sewage sludge. Am J Appl Sci 8(4):323–331

    CAS  CrossRef  Google Scholar 

  • Abreu CA, Cantoni M, Coscione AR, Paz-Ferreiro J (2012) Organic matter and barium absorption by plant species grown in an area polluted with scrap metal residue. Appl Environ Soil Sci: 1–7. http://dx.doi.org/10.1155/2012/476821

  • Adhikari T, Kumar A (2012) Phytoaccumulation and tolerance of Ricinus communis L. to nickel. Int J Theor Phys 14:481–492

    CAS  Google Scholar 

  • Ahmad R, Misra N (2014) Evaluation of phytoremediation potential of Catharanthus roseus with respect to chromium contamination. Am J Plant Sci 5:2378–2388

    CAS  CrossRef  Google Scholar 

  • Ali MS, Saleem M, Ahmad W, Parvez M, Yamdagni R (2002) A chlorinated monoterpene ketone, acylated β-sitosterol glycosides and a flavanone glycoside from Mentha longifolia (Lamiaceae). Phytochemistry 59(8):889–895

    CrossRef  Google Scholar 

  • Balasankar D, Vanilarasu K, Preetha PS, Rajeswari S, Umadevi M, Bhowmik D (2013) Traditional and medicinal uses of vetiver. J Med Plant Stud 2(3):191–200

    Google Scholar 

  • Bauddh K, Singh RP (2012a) Cadmium tolerance and its phytoremediation by two oil yielding plants Ricinus communis (L.) and Brassica juncea (L.) from the contaminated soil. Int J Theor Phys 14:772–785

    CAS  Google Scholar 

  • Bauddh K, Singh RP (2012b) Growth, tolerance efficiency and phytoremediation potential of Ricinus communis (L.) and Brassica juncea (L.) in salinity and drought affected cadmium contaminated soil. Ecotoxicol Environ Saf 85:13–22

    CAS  CrossRef  Google Scholar 

  • Bauddh K, Singh RP (2015a) Effects of organic and inorganic amendments on bio-accumulation and partitioning of Cd in Brassica juncea and Ricinus communis. Ecol Eng 74:93–100

    CrossRef  Google Scholar 

  • Bauddh K, Singh RP (2015b) Assessment of metal uptake capacity of castor bean and mustard for phytoremediation of nickel from contaminated soil. Bioremed J 19(2):124–138

    CAS  CrossRef  Google Scholar 

  • Bauddh K, Singh K, Singh B, Singh RP (2015a) Ricinus communis: a robust plant for bio-energy and phytoremediation of toxic metals from contaminated soil. Ecol Eng 84:640–652

    CrossRef  Google Scholar 

  • Bauddh K, Singh K, Singh RP (2015b) Ricinus communis L. a value added crop for remediation of cadmium contaminated soil. Bull Environ Contam Toxicol 96(2):265–269

    CrossRef  Google Scholar 

  • Bauddh K, Kumar A, Srivastava S, Singh RP, Tripathi RD (2016a) A study on the effect of cadmium on the antioxidative defense system and alteration in different functional groups in castor bean and Indian mustard. Arch Agron Soil Sci 62(6):877–891

    CAS  CrossRef  Google Scholar 

  • Bauddh K, Singh B, Singh RP (2016b) Ricinus communis L. as a value added alternative for restoration of cadmium contaminated and degraded agricultural ecosystem. Bull Environ Contam Toxicol 96(2):265–269

    CAS  CrossRef  Google Scholar 

  • Bernstein N, Chaimovitch D, Dudai N (2009) Effect of irrigation with secondary treated effluent on essential oil, antioxidant activity, and phenolic compounds in oregano and rosemary. Agron J 101:1–10

    CAS  CrossRef  Google Scholar 

  • Bishehkolaei R, Fahimi H, Saadatmand S, Nejadsattari T (2011) Ultrastructural localisation of chromium in Ocimum basilicum. Turk J Bot 35:261–268

    CAS  Google Scholar 

  • Boyle G (1996) Renewable energy power for a sustainable future. Oxford University Press, Oxford

    Google Scholar 

  • Brandt R, Merkl N, Schultze-Kraft R, Infante C, Broll G (2006) Potential of vetiver (Vetiveria zizanioides (L.) Nash) for phytoremediation of petroleum hydrocarbon-contaminated soils in Venezuela. Int J Theor Phys 8:273–284

    CAS  Google Scholar 

  • Chen Y, Shen Z, Li X (2004) The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Appl Geochem 19:1553–1565

    CAS  CrossRef  Google Scholar 

  • Citterio S, Santagostino A, Fumagalli P, Prato N, Ranalli P, Sgorbati S (2003) Heavy metal tolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L. Plant Soil 256(2):243–252

    CAS  CrossRef  Google Scholar 

  • Datta R, Quispe MA, Sarkar D (2011) Greenhouse study on the phytoremediation potential of vetiver grass, Chrysopogon zizanioides L., in arsenic-contaminated soils. Bull Environ Contam Toxicol 86:124–128

    CAS  CrossRef  Google Scholar 

  • Easterly JL, Burnham M (1996) Overview of biomass and waste fuel resources for power production. Biomass Bioenergy 11(2–3):72–92

    Google Scholar 

  • Gupta AK, Verma SK, Khan K, Verma RK (2013) Phytoremediation using aromatic plants: a sustainable approach for remediation of heavy metals polluted sites. Environ Sci Technol 47:10115–10116

    CAS  Google Scholar 

  • Hamzah A, Hapsari RI, Wisnubroto EI (2016) Phytoremediation of cadmium-contaminated agricultural land using indigenous plants. Int J Environ Agric Res (IJOEAR) 2(1):8–14

    Google Scholar 

  • Hashiramoto O (2007) Cross-sectoral policy developments in forestry. In: Dubé YC, Schmithüsen F (eds) Wood-product trade and policy issues. CABI, Wallingford.

    Google Scholar 

  • Ho Y, Hsieh J, Huang C (2013) Construction of a plant–microbe phytoremediation system: combination of vetiver grass with a functional endophytic bacterium, Achromobacter xylosoxidans F3B, for aromatic pollutants removal. Bioresour Technol 145:43–47

    CAS  CrossRef  Google Scholar 

  • Hu N, Ding D, Li G (2014) Natural plant selection for radioactive waste remediation. In: Gupta DK, Walther C (eds) Radionuclide contamination and remediation through plants. pp 33–53. doi:10.1007/978–3-319-07665-2_2

    Google Scholar 

  • Hussain K, Abdussalam AK, Chandra PR, Salim N (2011) Heavy metal accumulation potential and medicinal property of Bacopa monnieri – a paradox. J Stress Physiol Biochem 7(4):39–50

    Google Scholar 

  • Ibrahim MM, Alsahli AA, El-Gaaly G (2013) Evaluation of phytoremediation potential of six wild plants for metal in a site polluted by industrial wastes: a field study in Riyadh, Saudi Arabia. Pak J Bot 42(2):571–576

    Google Scholar 

  • Jiang W, Liu D, Hou W (2001) Hyperaccumulation of cadmium by roots, bulbs and shoots of garlic (Allium sativum L.). Bioresour Technol 76(1:9–13

    CrossRef  Google Scholar 

  • Karekezi S, Kithyoma W (2006) Bioenergy and agriculture: promises and challenges. Bioenergy and the poor. In: 2020 vision for food, agriculture, and the environment. International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Kim HL, Streltzer J, Goebert D (1999) St. John’s wort for depression: a metal-analysis of well-defined clinical trials. J Nerv Ment Dis 187:532–538

    CAS  CrossRef  Google Scholar 

  • Lal K, Minhas PS, Chaturvedi RK, Yadav RK (2008) Cd uptake and tolerance of three aromatic grasses on the Cd-rich soil. J Indian Soc Soil Sci 56:290–294

    CAS  Google Scholar 

  • Linger P, Müssig J, Fischer H, Kobert J (2002) Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil: fibre quality and phytoremediation potential. Ind Crop Prod 16(1):33–42

    CAS  CrossRef  Google Scholar 

  • Mahmud R, Inoue N, Kasajima S, Shaheen R (2008) Assessment of potential indigenous plant species for the phytoremediation of arsenic-contaminated areas of Bangladesh. Int J Theor Phys 10(2):117–130

    Google Scholar 

  • Makris KC, Shakya KM, Datta R, Sarkar D, Pachanoor D (2007) Chemically catalyzed uptake of 2,4,6-trinitrotoluene by Vetiveria zizanioides. Environ Pollut 148:101–106

    CAS  CrossRef  Google Scholar 

  • Maleki E, Aroua MK, Sulaiman NMN (2013) Improved yield of solvent free enzymatic methanolysis of palm and Jatropha oils blended with castor oil. Appl Energy 104:905–909

    CAS  CrossRef  Google Scholar 

  • Malko A (2002) Untersuchung zum Wirkstoffgehalt, zur Cadmiumaufnahme und Rotwelkeanfälligkeit von Hypericum perforatum L. Dissertation Justus-Liebig-Universität Gieβen, Germany, 163 pp

    Google Scholar 

  • Manan FA, Tsun-Thai C, Samad AA, Mamat DD (2015) Evaluation of the phytoremediation potential of two medicinal plants. Sains Malaysiana 44(4):503–509

    CrossRef  Google Scholar 

  • Manikandan R, Sahi SV, Venkatachalam P (2015) Impact assessment of mercury accumulation and biochemical and molecular response of Mentha arvensis: a potential hyperaccumulator plant. World Sci World J. http://dx.doi.org/10.1155/2015/715217

  • McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46

    CAS  CrossRef  Google Scholar 

  • Mejia JD, Salgado N, Orrego CE (2013) Effect of blends of diesel and palm-castor biodiesels on viscosity, cloud point and flash point. Ind Crop Prod 43:791–797

    CAS  CrossRef  Google Scholar 

  • Müller WE, Singer A, Wonnemann M (1999) Johanniskraut. Vom Nerventee zum Modernen Antidepressivum. Dt Apoth Ztg 139:1741–1750

    Google Scholar 

  • Pandey VC, Singh N (2015) Aromatic plants versus arsenic hazards in soils. J Geochem Explor 157:77–80

    CAS  CrossRef  Google Scholar 

  • Pandey S, Gupta K, Mukherjee AK (2007) Impact of cadmium and lead on Catharanthus roseus a phytoremediation study. J Environ Biol 28(3):655–662

    CAS  Google Scholar 

  • Pandey J, Chand S, Pandey S, Rajkumari PDD (2015) Palmarosa [Cymbopogon martinii (Roxb.) Wats.] as a putative crop for phytoremediation, in tannery sludge polluted soil. Ecotoxicol Environ Saf 122:296–302

    CAS  CrossRef  Google Scholar 

  • Pichai NMR, Samjiamjiaras R, Thammanoon H (2001) The wonders of a grass, Vetivers and its multifold application. Asian Infrastruct Res Rev 3:1–4

    Google Scholar 

  • Putwattana N, Kruatrachue M, Pokethitiyook P, Chaiyarat R (2010) Immobilization of cadmium in soil by cow manure and silicate fertilizer, and reduced accumulation of cadmium in sweet basil (Ocimum basilicum). Sci Asia 36:349–354

    CrossRef  Google Scholar 

  • Rai UN, Vajpayee P, Singh SN, Mehrotra S (2004) Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Sci 167:1159–1169

    Google Scholar 

  • Romeiro S, Lagôa AMMA, Furlani PR, de Abreu CA, de Abreu MF, Erismann NM (2006) Lead uptake and tolerance of Ricinus communis L. Braz J Plant Physiol 18(4):483–489

    CAS  CrossRef  Google Scholar 

  • Sá RA, Sá RA, Alberton O, Gazim ZC, Laverde A Jr, Caetano J, Amorin AC, Dragunski DC (2014) Phytoaccumulation and effect of lead on yield and chemical composition of Mentha crispa essential oil. Desalin Water Treat 53(11):3007–3017

    CrossRef  Google Scholar 

  • Sagar AD, Kartha S (2007) Bioenergy and sustainable development? Annu Rev Environ Resour 32:131–167

    CrossRef  Google Scholar 

  • Salim MRJ, Adenan MI, Amid A, Jauri MH, Sued AS (2013) Statistical analysis of metal chelating activity of Centella asiatica and Erythroxylum cuneatum using response surface methodology. Biotechnol Res Int, Article ID 137851

    Google Scholar 

  • Schneider M, Marquard R (1996) Investigation on the uptake of cadmium in Hypericum perforatum L. (St. John’s wort). Acta Hortic 426:435–442

    CAS  CrossRef  Google Scholar 

  • Scora RW, Chang AC (1997) Essential oil quality and heavy metal concentrations of peppermint grown on a municipal sludge-amended soil. J Environ Qual 26:975–979

    CAS  CrossRef  Google Scholar 

  • Sharma S, Adholeya A (2011) Phytoremediation of Cr-contaminated soil using Aloe vera and Chrysopogon zizanioides along with AM fungi and filamentous saprobe fungi: a research study towards possible practical application. Mycorrhiza News 22(4):16–20

    Google Scholar 

  • Shi G, Cai Q (2009) Cadmium tolerance and accumulation in eight potential energy crops. Biotechnol Adv 27:555–561

    CAS  CrossRef  Google Scholar 

  • Singh S, Melo J, Eapen S, D’Souza S (2008) Potential of vetiver (Vetiveria zizanoides L. Nash) for phytoremediation of phenol. Ecotoxicol Environ Saf 71:671–676

    CAS  CrossRef  Google Scholar 

  • Singhakant C, Koottatep T, Satayavivad J (2009) Enhanced arsenic removals through plant interactions in subsurface-flow constructed wetlands. J Environ Sci Health, Part A 44:163–169

    CAS  CrossRef  Google Scholar 

  • Sinha S (1999) Accumulation of Cu, Cd, Cr, Mn and Pb from artificially contaminated soil by Bacopa monnieri. Environ Monit Assess 57:253–264

    CAS  CrossRef  Google Scholar 

  • Sinha S, Chandra P (1990) Removal of Cu and Cd from water by Bacopa monnieri (L.). Water Air Soil Pollut 51:271–276

    CAS  Google Scholar 

  • Sinha S, Gupta M, Chandra P (1996) Bioaccumulation and biochemical effects of mercury in the plant Bacopa monnieri (L.). Environ Toxicol Water Qual 11:105–112

    CAS  CrossRef  Google Scholar 

  • Subhashini V, Swamy AVVS (2013) Phytoremediation of Pb and Ni contaminated soils using Catharanthus roseus (L.). Univers J Environ Res Technol 3(4):465–472

    Google Scholar 

  • Tamari N, Mine A, Sako A, Tamagawa S, Tabira Y, Kitamura Y (2014) Possible application of the medicinal plant Hyoscyamus albus in phytoremediation: excess copper compensates for iron deficiency, depending on the light conditions. Am J Plant Sci 5:3812–3822

    CAS  CrossRef  Google Scholar 

  • Thangaswamy S, Manjunatha B, Suarez JP, Babu M, Ponnuswamy G, Reddy GVS, Mariadoss S (2015) Phytoremediation of tannery effluent polluted soils of Dindigul, Tamil Nadu, using Arbuscular mycorrhizal fungi inoculated Azadirachta indica. J Chem Pharm Res 7(7):905–914

    CAS  Google Scholar 

  • Tirillini B, Ricci A, Pintore G, Chessa M, Sighinolfi S (2006) Induction of hypericins in Hypericum perforatum in response to chromium. Fitoterapia 77:164–170

    CAS  CrossRef  Google Scholar 

  • Truong P (2000) Vetiver grass technology for environmental protection. In: The 2nd international. Vetiver conference: Vetiver and the environment. Cha Am, Thailand

    Google Scholar 

  • Ustra MK, Silva JRF, Ansolin M, Balen M, Cantelli K, Alkimim IP, Mazutti MA, Voll FAP, Cabral VF, Cardozo-Filho L, Corazza ML, Oliveira JV (2013) Effect of temperature and composition on density, viscosity and thermal conductivity of fatty acid methyl esters from soybean, castor and Jatropha curcas oils. J Chem Thermod 58:460–466

    CAS  CrossRef  Google Scholar 

  • Varun M, D’Souza R, Pratas J, Paul MS (2012) Metal contamination of soils and plants associated with the glass industry in North Central India: prospects of phytoremediation. Environ Sci Pollut Res 9(1):269–281

    CrossRef  Google Scholar 

  • Verma SK, Singh K, Gupta AK, Pandey VC, Trevedi P, Verma SK, Patra DD (2014) Aromatic grasses for phyto management of coal fly ash hazards. Ecol Eng 73:425–428

    CrossRef  Google Scholar 

  • Verotta L (2003) Hypericum perforatum, a source of neuroactive lead structures. Curr Top Med Chem 3:87–201

    CrossRef  Google Scholar 

  • Wereko-Broddy C, Hagen EB (1996) Biomass conversion and technology. Wiley, Chichester

    Google Scholar 

  • Wu XH, Zhang HS, Gang L, Liu XC, Qin P (2012) Ameliorative effect of castor bean (Ricinus communis L.) planting on physicochemical and biological proper-ties of seashore saline soil. Ecol Eng 38:97–100

    CrossRef  Google Scholar 

  • Zahedifara M, Moosavib AA, Shafigh M, Zareib Z, Karimian F (2016) Cadmium accumulation and partitioning in Ocimum basilicum as influenced by the application of various potassium fertilizers. Arch Agron Soil Sci 62(5):663–673

    CrossRef  Google Scholar 

  • Zahir AA, Rahuman AA, Bagavan A, Santhoshkumar T, Mohamed RR, Kamaraj C, Rajakumar G, Elango G, Jayaseelan C, Marimuthu S (2010) Evaluation of botanical extracts against Haemaphysalis bispinosa Neumann and Hippobosca maculata Leach. Parasitol Res 107(3):585–592

    CrossRef  Google Scholar 

  • Zheljazkov VD, Nielsen NE (1996a) Studies on the effect of heavy metals (Cd, Pb, Cu, Mn, Zn and Fe) upon the growth, productivity and quality of lavender (Lavandula angustifolia Mill) production. J Essent Oil Res 8:259–274

    CAS  CrossRef  Google Scholar 

  • Zheljazkov VD, Nielsen NE (1996b) Effect of heavy metals on peppermint and cornmint. Plant Soil 178:59–66

    CAS  CrossRef  Google Scholar 

  • Zheljazkov VD, Craker LE, Xing B (2006) Effects of Cd, Pb, and Cu on growth and essential oil contents in dill, peppermint, and basil. Environ Exp Bot 58:9–16

    CAS  CrossRef  Google Scholar 

  • Zhi-Xin N, Li-Na S, Tie-Heng S, Yu-Shuang L, Hing W (2007) Evaluation of phytoextracting cadmium and lead by sunflower, ricinus, alfalfa and mustard in hydroponic culture. J Environ Sci 19:961–967

    CrossRef  Google Scholar 

  • Zurayk R, Sukkariyah B, Baalbaki R (2001) Common hydrophytes as bioindicators of nickel, chromium and cadmium pollution. Water Air Soil Pollut 127(1–4):373–388

    CAS  CrossRef  Google Scholar 

  • Zurayk R, Sukkariyah B, Baalbaki R, Ghanem DA (2002) Ni phytoaccumulation in Mentha aquatica L. and Mentha sylvestris L. Water Air Soil Pollut 139(1):355–364

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgment

Dr. Kuldeep Bauddh is thankful to UGC for the award of UGC Start-Up Grant (3(B):2202.03.789.03.01.31).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuldeep Bauddh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Jisha, C.K., Bauddh, K., Shukla, S.K. (2017). Phytoremediation and Bioenergy Production Efficiency of Medicinal and Aromatic Plants. In: Bauddh, K., Singh, B., Korstad, J. (eds) Phytoremediation Potential of Bioenergy Plants. Springer, Singapore. https://doi.org/10.1007/978-981-10-3084-0_11

Download citation