Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 667 Accesses

Abstract

Along with the development of SAR technique, imaging function cannot satisfy the requirement of the application of SAR systems in military and civil areas. Multi-function has become an important tendency of SAR. In this chapter, the development of SAR systems, GMTI and GMTIm algorithms are introduced, and the structure of this book is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu Y (2003) Radar imaging technology. Harbin Institute of Technology Press, Harbin

    Google Scholar 

  2. Zhang Z (1989) Principle, system and application of synthetic aperture radar. Science Press, Beijing

    Google Scholar 

  3. Bao Z, Xing M, Wang T (2005) Radar imaging technology. Publishing House of Electronics industry, Beijing

    Google Scholar 

  4. Mehrdad S (1999) Synthetic aperture radar signal processing with Matlab algorithms. Wiley

    Google Scholar 

  5. Curlander JC, McDonough RN (2006) Synthecia aperture radar–systems & signal processing. Publishing House of Electronics industry, Beijing

    Google Scholar 

  6. Qu C, He Y, Gong S (2002) Development of airborne SAR. Mod Radar 24(1):1–14

    Google Scholar 

  7. William MB (1967) Synthetic aperture radar. IEEE Trans Aerosp Electron Syst 3(2):217–229

    Google Scholar 

  8. Wiley CA (1985) Synthetic aperture radar. IEEE Trans Aerosp Electron Syst 21(3):440–443

    Article  Google Scholar 

  9. Sherwin CW, Ruina JP, Raweliffe RD (1962) Some early developments in synthetic aperture radar system. IRE Trans Mil Electron 6(2):111–115

    Article  Google Scholar 

  10. Skolnik MI (1985) Fifty years of radar. Proc IEEE 73:182–197

    Google Scholar 

  11. Wang J, Liu J, Yuan Y et al (2009) Research on application of unmanned aerial vehicles borne SAR. In: APSAR, 2009, pp 60–63

    Google Scholar 

  12. Li Y, Liang F, Song Q et al (2011) Lever arm rotation compensation for UAV mounted SAR. In: APSAR, 2011, pp 1–3

    Google Scholar 

  13. Wang Y, Xu X, Liu C et al (2010) Airship SAR system for precision microwave measurement of ground targets. J Electron Inf Technol 32(1):28–31

    Article  Google Scholar 

  14. Zhou Q, Qu C, Su F (2008) A new approach of extended Chirp Scaling algorithm for high squint missile-borne SAR data processing. ISCSCT 2:133–136

    Google Scholar 

  15. Yin C, Jia X, Qin W (2009) A novel algorithm for missile borne linear array antenna synthetic aperture radar imaging. In: ICIEA, 2009, pp 1488–1492

    Google Scholar 

  16. Yi Y, Zhang L, Li Y et al (2009) Range Doppler algorithm for bistatic missile-borne forward-looking SAR. In: APSAR, 2009, pp 960–963

    Google Scholar 

  17. Jordan R (1980) The Seasat-A synthetic aperture radar system. IEEE J Oceanic Eng 5(2):154–164

    Article  Google Scholar 

  18. Thompson T, Laderman A (1976) Seasat-A synthetic aperture radar. Radar System Implementation. OCEANS 8:247–251

    Google Scholar 

  19. Zhao Y (2007) Ground moving target indication of synthetic aperture radar. Institute of Electronics, Chinese Academy of Sciences

    Google Scholar 

  20. Li Y (2012) Motion error estimation and compensation of airborne SAR. Institute of Electronics, Chinese Academy of Sciences

    Google Scholar 

  21. Hu J (2012) Signal processing and imaging in multi-channel SAR systems. Institute of Electronics, Chinese Academy of Sciences

    Google Scholar 

  22. Wehner DR (1995) High-resolution radar, 2nd edn. Artech House, Norwood

    Google Scholar 

  23. Mancini P, Suchail JL, Desnos YL et al (1996) The development of the Envisat-1 advanced synthetic aperture radar. In: IEEE international geoscience and remote sensing symposium, 1996, pp 1355–1357

    Google Scholar 

  24. Desnos YL, Laur H (1999) The Envisat-1 advanced synthetic aperture radar processor and data products. In: IEEE international geoscience and remote sensing symposium, 1999, pp 1683–1685

    Google Scholar 

  25. Julien C, Monique B, Gaetan L (2003) RADARSET-1 SAR scenes for wind power mapping in coastal area: Gulf of St-Lawrence case. In: IEEE international geoscience and remote sensing symposium, 2003, pp 2700–2702

    Google Scholar 

  26. Steven I, Greta B (2004) RADARSAT-1: Canadian space agency hurricane watch program. In: IEEE international geoscience and remote sensing symposium, 2004, pp 2742–2745

    Google Scholar 

  27. Livingstone C (1998). The addition of MTI modes to commercial SAR satellites. In: Proceedings of 10th CASI conference on Astronautics, Ottawa, Canada, 1998, pp 26–28

    Google Scholar 

  28. Luscombe A (1995) The Radarsat project. In: IEEE Canadian Review, 1995

    Google Scholar 

  29. Buckreuss S, Balzer W, Muhlbauer P (2003) The TerraSAR-X satellite project. In: IEEE international geoscience and remote sensing symposium, 2003, vol 5, pp 3096–3098

    Google Scholar 

  30. Stangl M, Werninghaus R, Schwerizer B et al (2006) TerraSAR-X technologies and first results. IEE Proc Radar Sonar Navig 153(2):86–95

    Article  Google Scholar 

  31. Marco S, David H, Benjamin B et al (2005) TerraSAR-X: Calibration concept of a multiple mode high resolution SAR. In: IEEE international geoscience and remote sensing symposium, 2005, pp 4874–4877

    Google Scholar 

  32. Alberto M, Gerhard K, Irena H et al (2004) TanDEM-X: A TerraSAR-X add-on satellite for single-pass SAR interferometry. In: IEEE international geoscience and remote sensing symposium, 2004, pp 1000–1003

    Google Scholar 

  33. Zhang M (2012) Motion error compensation of multi-channel SAR system. Institute of Electronics, Chinese Academy of Sciences

    Google Scholar 

  34. Wu X (2012) Signal processing and imaging of random noise radar. Institute of Electronics, Chinese Academy of Sciences

    Google Scholar 

  35. “Lynx Synthetic Aperture Radar”, http://www.sandia.gov/radar/lynx.html

  36. Tsunoda SI, Pace F, Stence J, Woodring M (2000) Lynx: A high-resolution synthetic aperture radar, pp 51–58

    Google Scholar 

  37. Sweet AD, Dubbert DF, Doerry AW, Sloan GR, Dee Gutierrez GR (2006) A portfolio of fine resolution Ku-band miniSAR images: part I. In: Proceedings of SPIE 6210. Radar Sensor Technology X, 6210, May 2006

    Google Scholar 

  38. Cantalloube HMJ, Fernandez PD (2003) Airborne X-band SAR imaging with 10 cm resolution—technical challenge and preliminary results. In: IEEE international geoscience and remote sensing symposium, 2003, pp 185–187

    Google Scholar 

  39. Brenner AR, Roessing L (2008) Radar imaging of urban areas by means of very high-resolution SAR and interferometric SAR. IEEE Trans Geosci Remote Sens 46(10):2917–2982

    Article  Google Scholar 

  40. Ender JHG, Brenner AR (2003) PAMIR-A wideband phased array SAR/MTI system. IEE Proc Radar Sonar Navig 150(3):165–172

    Article  Google Scholar 

  41. Cerutti-Maori D, Klare J, Brenner AR et al (2008) Wide-area traffic monitoring with the SAR/GMTI system PAMIR. IEEE Trans Geosci Remote Sens 46(10):3019–3030

    Article  Google Scholar 

  42. Brenner AR, Ender JHG (2006) Demonstration of advanced reconnaissance techniques with the airborne SAR/GMTI sensor PAMIR. IEEE Trans Geosci Remote Sens 153(2):152–162

    Google Scholar 

  43. Brenner AR (2010) Proof of concept for airborne SAR imaging with 5 cm resolution in X-band. In: EUSAR, 2010, pp 615–618

    Google Scholar 

  44. Jakowatz CV, Wahl DE, Eichel PH et al (1996) Spotlight-mode synthetic aperture radar: a signal processing approach. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  45. Carrara WG, Goodman RS, Majewdki RM (1995) Spotlight synthetic aperture radar-signal processing algorithms. Artech House, Norwood

    MATH  Google Scholar 

  46. Zhu D, Zhu Z (2007) Range Resampling in the polar format algorithm for spotlight SAR image formation using the Chirp-Z transform. IEEE Trans Signal Process 55(3):1011–1023

    Article  MathSciNet  Google Scholar 

  47. Belcher DP, Baker CJ (1995) High resolution processing of hybrid strip-map/spotlight mode SAR. IEE Proc Radar Sonar Navig 143(6):366–374

    Google Scholar 

  48. Franceschetti G, Guida R, Iodice A et al (2004) Efficient simulation of hybrid stripmap/spotlight SAR raw signals from extended scenes. IEEE Trans Geosci Remote Sens 42(11):2385–2396

    Article  Google Scholar 

  49. Lanari R, Zoffoli S, Sansosti E et al (2001) New approach for hybrid strip-map/spotlight SAR data focusing. IEE Proc Radar Sonar Navig 148(6):363–372

    Article  Google Scholar 

  50. Ferraiuolo G, Meglio F, Pascazio V et al (2009) DEM reconstruction accuracy in multichannel SAR interferometry. IEEE Trans Geosci Remote Sens 42(11):2385–2396

    Google Scholar 

  51. Ferretti A, Prati C, Rocca F (1999) Multibaseline InSAR DEM reconstruction: the wavelet approach. IEEE Trans Geosci Remote Sens 37(2):705–715

    Article  Google Scholar 

  52. Lanari R, Fornaro G, Riccio D et al (1996) Generation of digital elevation models by using SIR-C/X-SAR multifrequency two-pass interferometry: the Etna case study. IEEE Trans Geosci Remote Sens 34(5):1097–1114

    Article  Google Scholar 

  53. Hansen RC (2009) Phased array antennas. John Wiley & Sons Inc, NJ

    Book  Google Scholar 

  54. Li G, Xu J, Peng Y et al (2007) Location and imaging of moving targets using nonuniform linear antenna array SAR. IEEE Trans Aerosp Electron Syst 43(3):1214–1220

    Article  Google Scholar 

  55. Ender JHG, Klare J (2009) System architectures and algorithms for radar imaging by MIMO-SAR. In: IEEE Radar Conference, Pasadena, CA, May 2009, pp 1–6

    Google Scholar 

  56. Edrich M (2004) Design overview and flight test results of the miniaturized SAR sensor MISAR. In: EURAD, Amsterdam, Netherlands, Oct 2004, pp 205–208

    Google Scholar 

  57. Edrich M (2006) Ultra-lightweight synthetic aperture radar based on a 35 GHz FMCW sensor concept and online raw data transmission. IEE Proc Radar Sonar Navig 153(2):129–134

    Google Scholar 

  58. Zaugg EC, Hudson DL, Long DG (2006) The BYU mu SAR: a small, student-built SAR for UAV operation. In: IEEE international geoscience and remote sensing symposium, 2006, pp 411–414

    Google Scholar 

  59. Zaugg EC, Long DG (2008) Theory and application of motion compensation for LFM-CW SAR. IEEE Trans Geosci Remote Sens 46(10):2990–2998

    Article  Google Scholar 

  60. Garester F, Dubois-Fernandez PC, Guyon D et al (2009) Forest biophysical parameter estimation using L- and P-band polarimetric SAR data. IEEE Trans Geosci Remote Sens 47(10):3379–3388

    Article  Google Scholar 

  61. Ding L, Geng F (2000) Radar principle. Xidian University Press, Xi’an

    Google Scholar 

  62. Clarke J (1985) Airborne early warning radar. Proc IEEE 73(2):312–324

    Google Scholar 

  63. Morchin WC, Johnston SL (1991) Modern airborne early warning radars. Microwave J 30–47. Academic OneFile. Accessed 1 Jan 2017

    Google Scholar 

  64. Tobin ME, Greenspan M (1996) Adaptation of AN/APG-76 multimode radar to the smuggling interdiction mission. In: IEEE national radar conference, Ann Arbor, Michigan, May 1996, pp 13–18

    Google Scholar 

  65. Tobin ME, Greenspan M (1996) Smuggling interdiction using an adaptation of the AN/APG-76 multimode radar. IEEE Aerosp Electron Syst Mag 11(11):19–24

    Google Scholar 

  66. Richard JD (2004) Ground moving target indicator radar and the transformation of U.S. warfighting, Northrop Grumman, Feb 2004

    Google Scholar 

  67. Bayma RW (1996) Hughes integrated synthetic aperture radar. In: IEEE international geoscience and remote sensing symposium, 1996, vol 3, pp 1615–1617

    Google Scholar 

  68. Liu C (2006) Real-time signal processing of airborne SAR/GMTI systems. Institute of Electronics, Chinese Academy of Sciences

    Google Scholar 

  69. Zheng M (2003) Moving target indication and imaging of synthetic aperture radar. Institute of Electronics, Chinese Academy of Sciences

    Google Scholar 

  70. Kang X (2004) Gournd moving target indication and imaging of airborne SAR. Institute of Electronics, Chinese Academy of Sciences

    Google Scholar 

  71. Raney RK (1971) Synthetic aperture imaging radar and moving target. IEEE Trans Aerosp Electron Syst 7:499–505

    Article  Google Scholar 

  72. Chen H, McGillem CD (1992) Target motion compensation by spectrum shifting in synthetic aperture radar. IEEE Trans Aerosp Electron Syst 28(3):119–125

    Google Scholar 

  73. Freeman A (1984) Simple MTI using synthetic aperture radar. In: IEEE international geoscience and remote sensing symposium, 1984, pp 65–70

    Google Scholar 

  74. Fienup JR (2001) Detection of moving targets in SAR imagery by focusing. IEEE Trans Aerosp Electron Syst 37(3):794–809

    Article  Google Scholar 

  75. Moreira J, Keydel W (1995) A new MTI-SAR approach using the reflectivity displacement method. IEEE Trans Geosci Remote Sens 33(5):1238–1244

    Article  Google Scholar 

  76. Barbarossa S (1992) Detection and imaging of moving objects with synthetic aperture radar, part I: optimal detection and parameter estimation theory. IEE Proceeds-F 139(1):79–88

    Google Scholar 

  77. Barbarossa S, Farina A (1992) Detection and imaging of moving objects with synthetic aperture radar, part II: joint time-frequency analysis by Wigner-Ville distribution. IEE Proceeds-F 139(1):89–97

    Google Scholar 

  78. Liu F, Sun D, Huang Y et al (2009) Fast parameter-estimation of LFM signal based on improved combined WVD and randomized Hough transform. ACTA Armamentarii 30(12):1642–1646

    Google Scholar 

  79. Liu J, Wang X, Liu Z et al (2007) Detection performance of linear frequency modulated signals based on Wigner-Hough transform. ACTA Electronica Sin 35(6):1212–1217

    Google Scholar 

  80. Kirscht M (1996) Detection and velocity estimation of moving objects in a sequence of single-look SAR images. In: IEEE international geoscience and remote sensing symposium, 1996, Lincoln, Nebraska, USA, pp 333–335

    Google Scholar 

  81. Dias J, Marques P (2003) Multiple moving target detection and trajectory estimation using a single SAR sensor. IEEE Trans Aerosp Electron Syst 39(2):604–624

    Article  Google Scholar 

  82. Li L, Si X, Chai J et al (2009) Parameters estimation for LFM radar signal based on reassigned wavelet-Radon transform. Syst Eng Electron 31(1):74–77

    Google Scholar 

  83. Li G, Zhu H (2001) Airborne SAR moving target parameter estimation based on extended wavelet transform. J Electron Inf Technol 23(11):1154–1161

    Google Scholar 

  84. Fante RL (1989) Analysis of the Displaced-Phase-Center radar for clutter reduction. Mitre Corporation Report, Aug 1989, MT10666

    Google Scholar 

  85. Lightstone L (1944) Antenna distortions in multiple phase centre interferometric systems. In: IEEE international geoscience and remote sensing symposium, Aug 1944, vol 4, pp 1980–1982

    Google Scholar 

  86. Wang HSC (1991) Mainlobe clutter cancellation by DPCA for space-based radars. In: Aerospace applications conference, 1991. Digest., 1991 IEEE, Feb 1991, pp 1–128

    Google Scholar 

  87. Stockburger E, Held (DN) Interferometric ground moving target imaging. In: IEEE international radar conference, 1995, 438–443

    Google Scholar 

  88. Soumekh M (1997) Moving target detection in Foliage using along track monopulse synthetic aperture radar imaging. IEEE Trans Image Process 6(8):1148–1163

    Article  Google Scholar 

  89. Moccia A, Rufino G (2001) Spaceborne along-track SAR interferometry: performance analysis and mission scenarios. IEEE Trans Aerosp Electron Syst 37(1):199–213

    Article  Google Scholar 

  90. Brennan LE, Reed IS (1973) Theory of adaptive radar. IEEE Trans Aerosp Electron Syst 9(3):237–252

    Article  Google Scholar 

  91. Ender JHG (1999) Space-time processing for multichannel synthetic aperture radar. Electron Commun Eng J 11(1):29–38

    Google Scholar 

  92. Gerlach K, Picciolo ML (2003) Airborne/Spacebased radar STAP using a structured covariance matrix. IEEE Trans Aerosp Electron Syst 39(1):269–281

    Article  Google Scholar 

  93. Zhao F (2013) Muli-channel SAR imaging and moving target indication technique. Institute of electronics, Chinese Academy of Sciences

    Google Scholar 

  94. Yu B (2013) FMCW-SAR signal processing and imaging technique. Institute of electronics, Chinese Academy of Sciences

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Yang, J. (2017). Introduction. In: Study on Ground Moving Target Indication and Imaging Technique of Airborne SAR. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-3075-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3075-8_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3074-1

  • Online ISBN: 978-981-10-3075-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics