Skip to main content

Numerical Hydrodynamic Modelling

  • Chapter
  • First Online:
Book cover Fundamentals of Estuarine Physical Oceanography

Abstract

As estuaries are three dimensional and time dependent, numerical models have been developed to overcome the simplifications inherent to the already studied analytical models (simple geometry, steady-state) and calculate estuarine circulation and salinity distributions. These models can be numerically integrated at selected grid points spatially distributed in the system domain; the governing partial differential equations use methods of finite-difference or finite-elements in curvilinear horizontal coordinates or sigma vertical coordinates, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andutta, F. P. 2011. O Sistema Estuarino dos Rios Caravelas e Peruipe (BA): Observações, Simulações, Tempo de Residência e Processos de Difusão e Advecção. Tese de Doutorado. São Paulo, Instituto Oceanográfico, Universidade de São Paulo. 121 p.

    Google Scholar 

  • Blumberg, A. F. 1975. A Numerical Investigation into the Dynamics of Estuarine Circulation. Tech. Rept. Chesapeake Bay Institute, The Jonhs Hopkins University. n. 91. 110 p. + Apêndices.

    Google Scholar 

  • Bryan, K. 1969. A numerical method for the study of the circulation of the world ocean. J. Computational Phys., 4(3):347–376.

    Google Scholar 

  • Hamrick, J. M. 1992. A Three-dimensional Environmental Fluid Dynamics Computer Code: Theoretical and Computational Aspects. The College of William and Mary, Virginia Institute of Marine Science, Special Report 317, 63 pp.

    Google Scholar 

  • Hunter, J.R. 1975. A method of velocity interpolation applicable to stratified estuaries. Chesapeake Bay Institute. Special Report 45, The Johns Hopkins University (quoted in Blumberg (1975), p. 68).

    Google Scholar 

  • Ji, Z-G. 2008. Hydrodynamics and Water Quality. John Wiley & Sons, 676 p.

    Google Scholar 

  • Lendertsee and Critton, E.C. (1971). A water quality simulation model of well mixed estuaries and coastal seas. Vol. 2. Computational Procedures. Rand Corporation, Report R-708-NYC, New York, 53 pp.

    Google Scholar 

  • Lendertsee, J.J.; Alexander, R.C. & Liu, S-K. 1973. A three dimensional model for estuaries and coastal Seas, V. 1. Principles of Computation. The Rand Corporation. Santa Monica, CA. No. R-1417-OWRR, 57 p.

    Google Scholar 

  • McDowell, D.M. & O’Connors, B.A. 1977. Hydraulic Behaviour of Estuaries. John Wiley & Sons, N.Y. 292 p.

    Google Scholar 

  • Nicholson, J., Broker, I., Roelvink, J.A., Price, D., Tanguy, J.M., Moreno, L. (1997). Intercomparison of coastal area morphodynamic models. Coastal Engineering, 31(1–4):97–123.

    Google Scholar 

  • Pereira, M. D.; Siegle, E.; Miranda, L. B. & Schettini, C. A. F. 2010. Hidrodinâmica e Transporte de Material Particulado em Suspensão em um Estuário Dominado pela Maré. Rev. Bras. de Geofísica (RBGf), 28(3):427–444.

    Google Scholar 

  • Phillips, O.M. 1969. The Dynamics of the Upper Ocean. Cambridge University Press, London.

    Google Scholar 

  • Richtmyer, R.D. & Morton, K.W. 1967. Difference Methods for Initial Value Problems. Interscience, N.Y., 463 p.

    Google Scholar 

  • Roache, P.J. 1982. Computational Fluid Dynamics. Hermosa Publishers. Albuquerque, M.N., 446 p.

    Google Scholar 

  • Schettini & Miranda, L. B. 2010. Circulation and Suspended Particulate Matter Transport in a Tidally Dominate Estuary: Caravelas Estuary, Bahia, Brazil. Braz. J. Oceanogr. 58(1):1–11.

    Google Scholar 

  • Schuman, F.G. 1962. Numerical Experiments with Primitive Equations. Symposium of Numerical Weather Prediction. Met. Soc. Of Japan, Tokyo. pp. 85–107.

    Google Scholar 

  • Thatcher, M. L. & Harleman, D. R. F. 1972. Prediction of Unsteady Salinity Intrusion in Estuaries: Mathematical Model and User’s Manual. Massachusetts Institute of Technology, Mass., Rep. MITSG 72–21. 193 p.

    Google Scholar 

  • Ward Jr., G. & Espey Jr., W. H. 1971. Estuarine modeling: An Assessment. Water Quality Office, Environmental Protection Agency. Control. Research Series. p. 225.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Pinheiro Andutta .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Bruner de Miranda, L., Andutta, F.P., Kjerfve, B., de Castro Filho, B.M. (2017). Numerical Hydrodynamic Modelling. In: Fundamentals of Estuarine Physical Oceanography. Ocean Engineering & Oceanography, vol 8. Springer, Singapore. https://doi.org/10.1007/978-981-10-3041-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3041-3_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3040-6

  • Online ISBN: 978-981-10-3041-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics