Skip to main content

Clinical Populations

  • Chapter
  • First Online:
  • 765 Accesses

Abstract

Persistent notions that striking chromosomal heteromorphisms are directly associated with clinical anomalies or have some indirect effect on the frequencies of major chromosome abnormalities or spontaneous miscarriages, have been the topics of numerous studies. Early studies [1,2,3,4] suggested roles of striking variants in mental retardation, autism, behavior disorders and congenital anomalies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lubs HA et al (1977) Q and C-banding polymorphisms in 7 and 8 year old children: racial differences and clinical significance: In: Hook E, Porter I (eds) Population cytogenetic studies in humans. Academic Press, New York, pp 133–59

    Google Scholar 

  2. Tharapel AT, Summitt RL (1978) Minor chromosome variations and selected heteromorphisms in 200 unclassifiable mentally retarded patients and 200 normal controls. Hum Genet 41:121–130

    Article  CAS  PubMed  Google Scholar 

  3. Funderburk SJ et al (1978) Minor chromosome variants in child psychiatric patients. Am J Med Genet 1:301–308

    Article  Google Scholar 

  4. Matsuura JS, Mayer M, Jacobs PA (1979) A cytogenetic survey of an institution for the mentally retarded. III. Q-band chromosome heteromorphisms. Hum Genet 523:203–210

    Google Scholar 

  5. Soudek D, Sroka H (1979) Chromosomal variants in mentally retarded and normal men. Clin Genet 16:109–116

    Article  CAS  PubMed  Google Scholar 

  6. Barlow P (1973) The influence of inactive chromosomes on human development. Hum Genet 17:105–136

    Article  CAS  Google Scholar 

  7. Maes A et al (1983) C heterochromatin variation in couples with recurrent early abortions. J Med Genet 20:350–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Patil SR, Lubs HA (1977) A possible association of long Y chromosomes and fetal loss. Hum Genet 35:233–235

    Article  CAS  PubMed  Google Scholar 

  9. Genest P (1979) Chromosome variants and abnormalities in 51 married couples with repeated spontaneous abortions. Clin Genet 16:387–389

    Article  CAS  PubMed  Google Scholar 

  10. Ford JH, Lester P (1978) Chromosomal variants and nondisjunction. Cytogenet Cell Genet 21:300–303

    Article  CAS  PubMed  Google Scholar 

  11. Eiben B et al (1987) High incidence of minor chromosomal variants in teratozoospermic males. Andrologia 19:684–687

    Article  CAS  PubMed  Google Scholar 

  12. Del Porto G et al (1993) Chromosome heteromorphisms and early recurrent abortions. Hum Reprod 8:755–758

    Article  PubMed  Google Scholar 

  13. Tsvetkova TG, Iankova MF (1979) [Human chromosome polymorphism and disordered reproductive function. I. Routine chromosome variants]. Khromosomnyi polimorfism i narushenie reproduktivnoi funktsii u cheloveka. Soobshchenue I. Rutinnye varianty khromosom. Genetika 15:1858–1869 (Russian)

    Google Scholar 

  14. Kuleshov NP, Kulieva LM (1979) [Frequency of chromosome variants in human populations] Chastota khromosmnykh variantov v populiatsiiakh cheloveka]. Genetika 15:745–751 (Russian)

    Google Scholar 

  15. Bobrow M (1985) Heterochromatic chromosome variation and reproductive failure. Exp Clin Immunogenet 2:97–105

    CAS  PubMed  Google Scholar 

  16. Rodriguez-Gomez MT, Martin-Sempere MJ, Abrisqueta JA (1987) C-band length variability and reproductive wastage. Hum Genet 75:56–61

    CAS  PubMed  Google Scholar 

  17. Kruminia AR et al (1987) [Quantitative analysis of C segments of chromosomes 1,9,16 and Y in couples with reproductive disorders]. Genetika 23:540–543 (Russian)

    Google Scholar 

  18. Buretic-Tomljanovic A et al (1997) Quantiative analysis of constitutive heterochromatin in couples with fetal wastage. Am J Reprod Immun 38:201–204

    Google Scholar 

  19. Podugol’nikova OA, Solonichenko VG (1994) [The C heterochromatin of chromosomes 1, 9, 16 and Y in patients with Noonan’s syndrome] Tsitol Genet 28:85–88 (Russian)

    Google Scholar 

  20. Jackson-Cook CK et al (1985) Nucleolar organizer region variants as a risk factor for Down syndrome. Am J Hum Genet 37:1049–1061

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Green JE et al (1989) Variant nucleolar organizing regions and the risk of Down syndrome. Clin Genet 35:243–250

    Article  CAS  PubMed  Google Scholar 

  22. Serra A, Bova R (1990) Acrocentric chromosome double NOR is not a risk factor for Down syndrome. Am J Med Genet Suppl 7:169–174

    CAS  PubMed  Google Scholar 

  23. Sheng WW, Perng CK, Wuu KD (1992) Double NOR is not a good indicator of risk for Down syndrome. Jpn J Hum Genet 37:151–155

    Article  CAS  PubMed  Google Scholar 

  24. Hassold T, Jacobs PA, Pettay D (1987) Analysis of nucleolar organizing regions in parents of trisomic spontaneous abortions. Hum Genet 76(4):381–384

    Article  CAS  PubMed  Google Scholar 

  25. Mikelsaar AV et al (1977) Inheritance of Ag-stainability of nucleolus organizer regions. Investigations in 7 families with trisomy 21. Hum Genet 38:183–188

    Google Scholar 

  26. Markovic VD, Worton RG, Berg JM (1978) Evidence for the inheritance of silver-stained nucleolus organizer regions. Hum Genet 41(2):181–187

    Article  CAS  PubMed  Google Scholar 

  27. Soprano KJ, Dev VG, Croce CM, Baserga R (1976) Reactivation of silent rRNA genes by simian virus 40 in human-mouse hybrid cells. Proc Natl Acad Sci USA 76(8):3885–3899

    Article  Google Scholar 

  28. Dev VG, Byrne J, Bunch G (1979) Partial translocation of NOR and its activity in a balanced carrier and in her cri-du-chat fetus. Hum Genet 51:277–280

    Article  CAS  PubMed  Google Scholar 

  29. Miller DA et al (1978) Human tumor and rodent-human hybrid cells with an increased number of active human NORs. Cytogenet Cell Genet 2:33–41

    Google Scholar 

  30. Lau Y-F et al (1979) Cytological analyses of a 14p+ variant by means of N-banding and combinations of silver staining and chromosome bandings. Hum Genet 46:75–82

    Google Scholar 

  31. Warburton D, Atwood KC, Henderson AS (1976) Variation in the number of genes for rRNA among human acrocentric chromosomes: correlation with frequency of satellite association. Cytogenet Cell Genet 17:221–230

    Article  CAS  PubMed  Google Scholar 

  32. Miller DA et al (1977) Frequency of satellite association of human chromosomes is correlated with amount of Ag-staining of the nucleolus organizer region. Am J Hum Genet 29:490–502

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bernstein R, Dawson B, Griffiths J (1981) Human inherited marker chromosome 22 short-arm enlargement: investigation of rDNA gene multiplicity, Ag-band size, and acrocentric association. Hum Genet 58:135–139

    Article  CAS  PubMed  Google Scholar 

  34. Pardue ML, Hsu TC (1975) Locations of 18s and 28s ribosomal genes on the chromosomes of Indian muntjac. J Cell Biol 64:251–254

    Article  CAS  PubMed  Google Scholar 

  35. Hsu TC et al (1975) Distribution of 18s + 28s ribosomal genes in mammalian genomes. Chromosoma 53(1):25–36

    Article  CAS  PubMed  Google Scholar 

  36. Goodpasture C et al (1976) Human nucleolus organizers: the satellites or stalks? Am J Hum Genet 28:559–566

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mikelsaar AV et al (1977) Frequency of Ag-stained nucleolus organizer regions in the acrocentric chromosomes of man. Hum Genet 37(1):73–77

    Google Scholar 

  38. Mikelsaar AV, Ilus T (1979) Populational polymorphism in silver staining of nucleolus organizer regions (NORs) in human acrocentric chromosomes. Hum Genet 51(3):281–285

    Google Scholar 

  39. Verma et al (1981) Population heteromorphisms of Ag-stained nucleolus organizer regions (NORs) in the acrocentric chromosomes of East Indians. Hum Genet 59(4):412–415

    Article  CAS  PubMed  Google Scholar 

  40. Zakharov AF et al (1982) Polymorphism of Ag-strained nucleolar organizer regions in man. Hum Genet 60(4):2334–2339

    Article  Google Scholar 

  41. Denton TE et al (1981) The relationship between aging and ribosomal gene activity as evidenced by silver staining. Mech Ageing Dev 15(1):1–7

    Article  CAS  PubMed  Google Scholar 

  42. Das BC et al (1986) The number of silver-staining NORs (rDNA) in lymphocytes of newborns and its relationship to human development. Mech Ageing Dev 36(2):117–123

    Article  CAS  PubMed  Google Scholar 

  43. Ozen M, Hopwood VL, Pathak S (1995) Ag-NOR studies in a human lymphocyte culture: are variants localized to specific chromosomes. Am J Med Genet 59(2):225–228

    Article  CAS  PubMed  Google Scholar 

  44. Morton CC et al (1981) Quinacrine mustard and nucleolar organizer region heteromorphisms in twins. Acta Genet Med Gemollol (Roma) 30(1): 39–49

    Google Scholar 

  45. Balicek P, Zizka J (1980) Intercalar satellites of human acrocentric chromosomes as a cytological manifestation of polymorphisms in GC-rich material. Hum Genet 54:343–347

    Google Scholar 

  46. Balicek P, Zizka J, Skalska H (1982) RGH-band polymorphism of the short arms of human acrocentric chromosomes and relationship of variants to satellite association. Hum Genet 62:237–239

    Article  CAS  PubMed  Google Scholar 

  47. Perez-Castillo A, Martin-Lucas MA, Abrisqueta JA (1986) New insights into the effects of extra nucleolus organizer regions. Hum Genet 72:80–82

    Article  CAS  PubMed  Google Scholar 

  48. Hobbs CA et al (2000) Polymorphisms in genes involved in folate metabolism as maternal risk factors for Down syndrome. Am J Hum Genet 67:623–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pangalos CG et al (1992) DNA polymorphism analysis in families with recurrence of free trisomy 21. Am J Hum Genet 51:1015–1027

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Pangalos C et al (1994) Understanding the mechanism(s) of mosaic trisomy 21 by using DNA polymorphism analysis. Am J Hum Genet 54:473–481

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Warren AC et al (1987) Evidence for reduced recombination on the nondisjoined chromosomes 21 in Down syndrome. Science 237:652–654

    Article  CAS  PubMed  Google Scholar 

  52. Sherman SL et al (1991) Trisomy 21: association between reduced recombination and nondisjunction. Am J Hum Genet 49:608–620

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lamb NE et al (2005) Association between maternal age and meiotic recombination. Am J Hum Genet 76:91–99

    Article  CAS  PubMed  Google Scholar 

  54. Turleau C, Vekemans M (2010) Trisomie 21: 50 ans entre medicine et science. Med Sci (Paris) 26(3):267–272 [French]

    Google Scholar 

  55. Yasseen AA, Aunuiz AF (2002) High frequency of satellite association in metaphases of infertile male patients. Saudi Med J 23:427–431

    PubMed  Google Scholar 

  56. Jacobs PA, Mayer M (1981) The origin of human trisomy: a study of heteromorphisms and satellite associations. Ann Hum Genet 45:357–365

    Article  CAS  PubMed  Google Scholar 

  57. Kovaleva NV, Butomo IV, Novikova IIu (1993) Acrocentric chromosomal associations in the families of children with Down’s disease. Tsitologia 35:33–43

    CAS  Google Scholar 

  58. Reddy KS, Sulcova V (1988) The mobile nature of acrocentric elements illustrated by three unusual chromosome variants. Hum Genet 102(6):653–662

    Article  Google Scholar 

  59. Benzachen B et al (2001) Acrocentric chromosome polymorphisms: beware of cryptic translocations. Prenat Diagn 21(2):96–98

    Article  Google Scholar 

  60. De Pater JM et al (2000) Precarious acrocentric short arm in prenatal diagnosis: no chromosome 14 polymorphism, but trisomy 17p. Genet Couns 11(3):241–247

    PubMed  Google Scholar 

  61. Trifonov V et al (2003) Enlarged chromosome 13 p-arm hiding a cryptic partial trisomy 6q22.2-pter. Prenat Diagn 23(5):427–430

    Article  PubMed  Google Scholar 

  62. Cockwell AE et al (2003) A study of cryptic terminal rearrangements in recurrent miscarriage couples detects unsuspected acrocentric pericentromeric abnormalities. Hum Genet 112(3):298–302

    PubMed  Google Scholar 

  63. Wyandt HE, Patil RS (2004) Heteromorphisms in clinical populations. In: Wyandt HE, Tonk VS (eds) Atlas of human chromosome heteromorphisms. Kluwer Academic Publishers, Dordrecht, pp 47–62

    Chapter  Google Scholar 

  64. Atkin NB (1977) Chromosome 1 heteromorphism in patients with malignant disease: a constitutional marker for a high risk group? Br Med J 1:358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lundgren R, Berger R, Kistoffersson U (1991) Constitutive heterochromatin C-band polymorphism in prostatic cancer. Cancer Genet Cytogenet 51:57–62

    Article  CAS  PubMed  Google Scholar 

  66. Kivi S, Mikelsaar AV (1980) Q- and C-band polymorphisms in patients with ovarian or breast carcinoma. Hum Genet 56:111–114

    CAS  PubMed  Google Scholar 

  67. Kivi S, Mikelsaar AV (1987) C-band polymorphisms in lymphocytes of patients with ovarian or breast cancer. Cancer Genet Cytogenet 28:77–85

    Article  CAS  PubMed  Google Scholar 

  68. Heneen WK, Habib ZA, Rohme D (1980) Heteromorphism of constitutive heterochromatin in carcinoma and dysplasia of the uterine cervix. Eur J Obstet Gynecol Reprod Biol 10:173–182

    Article  CAS  PubMed  Google Scholar 

  69. Labal de Vinuesa M et al (1984) Heterochromatic variants and their association with neoplasias. I. Chronic and acute leukemia. Cancer Genet Cytogenet 13:297–302

    Article  CAS  PubMed  Google Scholar 

  70. Sadamori N, Sandberg AA (1983) The clinical and cytogenetic significance of C-banding on chromosome #9 in patients with Ph1-positive chronic myeloid leukemia. Cancer Genet Cytogenet 8:235–241

    Article  CAS  PubMed  Google Scholar 

  71. Wan TS, Ma SK, Chan LC (2000) Acquired pericentric inversion of chromosome 9 in essential thrombocythemia. Hum Genet 106:669–670

    Article  CAS  PubMed  Google Scholar 

  72. Betz JL et al (2005) Acquired inv(9): what is its significance? Cancer Genet Cytogenet 160:76–78

    Article  CAS  PubMed  Google Scholar 

  73. Erdtmann B (1982) Aspects of evaluation, significance and evolution of human C-band heteromorphism. Hum Genet 61:281–294

    Article  CAS  PubMed  Google Scholar 

  74. Doneda L et al (1987) Mosaicism in the C-banded region of chromosome 1 in cancer families. Cancer Genet Cytogenet 27:261–268

    Article  CAS  PubMed  Google Scholar 

  75. Qu GZ et al (1999) Frequent hypomethylation in Wilms tumors of pericentromeric DNA in chromosomes 1 and 16. Cancer Genet Cytogenet 109:34–39

    Article  CAS  PubMed  Google Scholar 

  76. Sawyer JR et al (1995) Chromosome instability in ICF syndrome: formation of micronuclei from multibranched chromosomes 1 demonstrated by fluorescence in situ hybridization. Am J Med Genet 56:203–209

    Article  CAS  PubMed  Google Scholar 

  77. Jeanpierre M et al (1993) An embryonic-like methylation pattern of classical satellite DNA is observed in ICF syndrome. Hum Mol Genet 2:731–735

    Article  CAS  PubMed  Google Scholar 

  78. Ji W et al (1997) DNA demethylation and pericentromeric rearrangements of chromosome 1. Mut Res 379:33–41

    Article  CAS  Google Scholar 

  79. Tse W et al (1995) A novel gene, AF1q, fused to MLL in t(1;11) (q21;q23), is specifically expressed in leukemic and immature hematopoietic cells. Blood 85:650–656

    CAS  PubMed  Google Scholar 

  80. Mugneret F et al (1995) Der(16)t(1;16)(q11;q11) in myelodysplastic syndromes: a new non-random abnormality characterized by cytogenetic and fluorescence in situ hybridization studies. Brit J Haematol 90:119–124

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herman E. Wyandt .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Wyandt, H.E., Wilson, G.N., Tonk, V.S. (2017). Clinical Populations. In: Human Chromosome Variation: Heteromorphism, Polymorphism and Pathogenesis. Springer, Singapore. https://doi.org/10.1007/978-981-10-3035-2_4

Download citation

Publish with us

Policies and ethics