Skip to main content

Case Study: 3D Printed Cartilage

  • Chapter
  • First Online:
Biomaterials for Musculoskeletal Regeneration

Part of the book series: Indian Institute of Metals Series ((IIMS))

  • 649 Accesses

Abstract

In the past decade, cartilage tissue engineering research envisaged on the development of engineered constructs to repair cartilage defects, which could be inflicted due to degenerative disease or traumatic injury. However, despite significant efforts, development of load bearing functional cartilage remains elusive. 3D bioprinting offers a fascinating approach to replicate the complex anatomical cartilaginous tissue architecture by precise delivery of encapsulated cells and morphogens at pre-determined location. Silk fibroin protein can be used for cartilage 3D bioprinting, as it possesses unique features such as shear thinning behaviour, self-supporting filamentous extrusion, instant cytocompatible sol-to-gel transition and tailorable mechanical strength. But systematic optimization of chemistry and rheology of bioink, topographical, physico-chemical and biomechanical functionality of printed cartilage constructs should be done to achieve this target. In this chapter we tried to summarize how chondrogenic differentiation is supported in 3D printed construct and signaling mechanisms minimizing hypertrophic differentiation of progenitor cells towards development of phenotypically stable engineered cartilage constructs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhattacharjee M, Coburn J, Centola M, Murab S, Barbero A, Kaplan DL, Martin I, Ghosh S. Tissue engineering strategies to study cartilage development, degeneration and regeneration. Adv Drug Deliv Rev. 2015;84:107–22.

    Article  Google Scholar 

  2. Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, Dodson A, Martorell J, Bellini S, Parnigotto PP, Dickinson SC, Hollander AP, Mantero S, Conconi MT, Birchall MA. Clinical transplantation of a tissue-engineered airway. Lancet. 2008;372(9655):2023–30.

    Article  Google Scholar 

  3. Fulco I, Miot S, Haug MD, Barbero A, Wixmerten A, Feliciano S, Wolf F, Jundt G, Marsano A, Farhadi J, Heberer M, Jakob M, Schaefer DJ, Martin I. Engineered autologous cartilage tissue for nasal reconstruction after tumour resection: an observational first-in-human trial. Lancet. 2014;384(9940):337–46.

    Article  Google Scholar 

  4. Fazaeli S, Ghazanfari S, Everts V, Smit TH, Koolstra JH. The contribution of collagen fibers to the mechanical compressive properties of the temporomandibular joint disc. Osteoarthr Cartil. 2016;24(7):1292–301.

    Article  Google Scholar 

  5. Bhattacharjee M, Chameettachal S, Pahwa S, Ray AR, Ghosh S. Strategies for replicating anatomical cartilaginous tissue gradient in engineered intervertebral disc. ACS Appl Mater Interfaces. 2014;6(1):183–93.

    Article  Google Scholar 

  6. Puetzer JL. Koo E2, Bonassar LJ. Induction of fiber alignment and mechanical anisotropy in tissue engineered menisci with mechanical anchoring. J Biomech. 2015;48(8):1436–43.

    Article  Google Scholar 

  7. Bhattacharjee M, Miot S, Gorecka A, Singha K, Loparic M, Dickinson S, Das A, Bhavesh NS, Ray AR, Martin I, Ghosh S. Oriented lamellar silk fibrous scaffolds to drive cartilage matrix orientation: towards annulus fibrous tissue engineering. Acta Biomater. 2012;8(9):3313–25.

    Article  Google Scholar 

  8. Moutos FT, Estes BT, Guilak F. Multifunctional hybrid three-dimensionally woven scaffolds for cartilage tissue engineering. Macromol Biosci. 2010;10(11):1355–64.

    Article  Google Scholar 

  9. Chameettachal S, Murab S, Vaid R, Midha S, Ghosh S. Effect of visco-elastic silk-chitosan microcomposite scaffolds on matrix deposition and biomechanical functionality for cartilage tissue engineering. J Tissue Eng Regen Med. 2015.

    Google Scholar 

  10. von der Mark K, Gauss V, von der Mark H, Müller P. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature. 1977;267(5611):531–2.

    Article  Google Scholar 

  11. Sharma B, Williams CG, Kim TK, Sun D, Malik A, Khan M, Leong K, Elisseeff JH. Designing zonal organization into tissue-engineered cartilage. Tissue Eng. 2007;13(2):405–14.

    Article  Google Scholar 

  12. Klein TJ, Schumacher BL, Schmidt TA, Li KW, Voegtline MS, Masuda K, Thonar EJ, Sah RL. Tissue engineering of stratified articular cartilage from chondrocyte subpopulations. Osteoarthr Cartil. 2003;11(8):595–602.

    Article  Google Scholar 

  13. Ng KW, Ateshian GA, Hung CT. Zonal chondrocytes seeded in a layered agarose hydrogel create engineered cartilage with depth-dependent cellular and mechanical inhomogeneity. Tissue Eng Part A. 2009;15(9):2315–24.

    Article  Google Scholar 

  14. Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell. 2002;2(4):389–406.

    Article  Google Scholar 

  15. Torzilli PA, Grande DA, Arduino JM. Diffusive properties of immature articular cartilage. J Biomed Mater Res. 1998;40(1):132–8.

    Article  Google Scholar 

  16. Maeda S, Miyabayashi T, Yamamoto JK, Roberts GD, Lepine AJ, Clemmons RM. Quantitative analysis of chondroitin sulfate isomers in intervertebral disk chondrocyte culture using capillary electrophoresis. J Vet Med Sci. 2001;63(9):1039–43.

    Article  Google Scholar 

  17. Theodoropoulos JS, De Croos JN, Park SS, Pilliar R, Kandel RA. Integration of tissue-engineered cartilage with host cartilage: an in vitro model. Clin Orthop Relat Res. 2011;469(10):2785–95.

    Article  Google Scholar 

  18. Pelttari K, Winter A, Steck E, Goetzke K, Hennig T, Ochs BG, Aigner T, Richter W. Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum. 2006;54(10):3254–66.

    Article  Google Scholar 

  19. Seda Tigli R, Ghosh S, Laha MM, Shevde NK, Daheron L, Gimble J, Gümüşderelioglu M, Kaplan DL. Comparative chondrogenesis of human cell sources in 3D scaffolds. J Tissue Eng Regen Med. 2009;3(5):348–60.

    Article  Google Scholar 

  20. Ghosh S, Parker ST, Wang X, Kaplan DL, Lewis JA. Direct-write assembly of micro-periodic silk fibroin scaffolds for tissue engineering applications. Adv Funct Mater. 2008;18(13):1883–9.

    Article  Google Scholar 

  21. Das S, Pati F, Chameettachal S, Pahwa S, Ray AR, Dhara S, Ghosh S. Enhanced redifferentiation of chondrocytes on microperiodic silk/gelatin scaffolds: toward tailor-made tissue engineering. Biomacromolecules. 2013;14(2):311–21.

    Article  Google Scholar 

  22. Jose RR, Brown JE, Polido KE, Omenetto FG, Kaplan DL. Polyol-silk bioink formulations as two-part room-temperature curable materials for 3D printing. ACS Biomater. Sci. Eng. 2015;1(9):780–8.

    Article  Google Scholar 

  23. Das S, Pati F, Choi YJ, Rijal G, Shim JH, Kim SW, Ray AR, Cho DW, Ghosh S. Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater. 2015;11:233–46.

    Article  Google Scholar 

  24. Klumpers DD, Mooney DJ, Smit TH. From skeletal development to tissue engineering: lessons from the micromass assay. Tissue Eng Part B Rev. 2015;21(5):427–37.

    Article  Google Scholar 

  25. Nair K, Gandhi M, Khalil S, Yan KC, Marcolongo M, Barbee K, Sun W. Characterization of cell viability during bioprinting processes. Biotechnol J. 2009;4(8):1168–77.

    Article  Google Scholar 

  26. Kundu J, Shim JH, Jang J, Kim SW, Cho DW. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med. 2015;9(11):1286–97.

    Article  Google Scholar 

  27. Tasoglu S, Demirci U. Bioprinting for stem cell research. Trends Biotechnol. 2013;31(1):10–9.

    Article  Google Scholar 

  28. Malda J, Visser J, Melchels FP, Jüngst T, Hennink WE, Dhert WJA, Groll J, Hutmacher DW. Engineering hydrogels for biofabrication. Adv Mater. 2013;25(36):5011–28.

    Article  Google Scholar 

  29. Chang R, Nam J, Sun W. Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng Part A. 2008;14(1):41–8.

    Article  Google Scholar 

  30. Fedorovich NE, De Wijn JR, Verbout AJ, Alblas J, Dhert WJ. Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Eng Part A. 2008;14(1):127–33.

    Article  Google Scholar 

  31. Das RK, Zouani OF. A review of the effects of the cell environment physicochemical nanoarchitecture on stem cell commitment. Biomaterials. 2014;35(20):5278–93.

    Article  Google Scholar 

  32. Regulation of chondrogenesis and hypertrophy in 3D bioprinted constructs, in communication, ACS Biomaterials).

    Google Scholar 

  33. Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254–71.

    Article  Google Scholar 

  34. Visser J, Gawlitta D, Benders KE, Toma SM, Pouran B, van Weeren PR, Dhert WJ, Malda J. Endochondral bone formation in gelatin methacrylamide hydrogel with embedded cartilage-derived matrix particles. Biomaterials. 2015;37:174–82.

    Article  Google Scholar 

  35. Kesti M, Eberhardt C, Pagliccia G, Kenkel D, Grande D, Boss A, Zenobi-Wong M. A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation. Acta Biomater. 2015;11:162–72.

    Article  Google Scholar 

  36. Studer D, Millan C, Öztürk E, Maniura-Weber K, Zenobi-Wong M. Molecular and biophysical mechanisms regulating hypertrophic differentiation in chondrocytes and mesenchymal stem cells. Eur Cell Mater. 2012;24(24):118–35.

    Google Scholar 

  37. Fedorovich NE, Schuurman W, Wijnberg HM, Prins HJ, van Weeren PR, Malda J, Alblas J, Dhert WJ. Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng Part C Methods. 2012;18(1):33–44.

    Article  Google Scholar 

  38. Xu T, Binder KW, Albanna MZ, Dice D, Zhao W, Yoo JJ, Atala A. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication. 2013;5(1):015001.

    Article  Google Scholar 

  39. Otto IA, Melchels FPW, Zhao X, Randolph MA, Kon M, Breugem CC, Malda J. Auricular reconstruction using biofabrication-based tissue engineering strategies. Biofabrication. 2015;7:032001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourabh Ghosh .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Basu, B., Ghosh, S. (2017). Case Study: 3D Printed Cartilage. In: Biomaterials for Musculoskeletal Regeneration. Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-10-3017-8_8

Download citation

Publish with us

Policies and ethics