Skip to main content

Rare Earth, Rare Earth Luminescence, Luminescent Rare Earth Compounds, and Photofunctional Rare Earth Hybrid Materials

  • Chapter
  • First Online:
Photofunctional Rare Earth Hybrid Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 251))

Abstract

This chapter mainly focuses on the fundamental principles of rare earth luminescence, which are important for the investigation of the photofunctional rare earth hybrid materials. It introduces the rare earth elements and their physiochemical properties, the atomic spectral term and energy level transition of rare earth ions associated with their electronic configuration, and the luminescence and spectroscopy of rare earth ions, rare earth inorganic compounds for phosphors, rare earth coordination compounds for molecular luminescence, and photofunctional rare earth hybrid materials combining the characteristics of both phosphor and molecular luminescence. This chapter provides a basis to understand the contents of the subsequent chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ropp RC (2004) Luminescence and the solid state, 2nd edn. Elsevier Science, Boston

    Google Scholar 

  2. Jolly L (1984) Modern inorganic chemistry. McGraw-Hill, New York

    Google Scholar 

  3. Kitai A (2008) Luminescent materials and applications. Wiley, Hoboken

    Book  Google Scholar 

  4. Yan B, Chen ZD (2001) Cyano-bridged aqua (N,N-dimethylacetamide) (cyanoiron) rare earths from samarium, gadolinium or holmium nitrate and potassium hexacyanoferrate: crystal structure and magnetochemistry. Helv Chim Acta 84:817–829

    Article  Google Scholar 

  5. Yan B, Wang SX, Chen ZD (2003) Synthesis, crystal structures and magnetic properties of ion-pair complexes with hydrogen bonding network: ln(DMA)n(H2O)mCr(CN)6⋅xH2O (for ln = Sm, Gd: n = 4, m = 3, x = 2; for ln = Er: n = 3, m = 4, x = 0). J Coord Chem 55:573–586

    Article  Google Scholar 

  6. JH W, Yan B (2010) Room-temperature solid-state reaction behavior, hydrothermal crystallization and physical characterization of NaRE(MoO4)2 and Na5Lu(MoO4)4 compounds. J Amer Ceram Soc 93:2188–2194

    Article  Google Scholar 

  7. Moore EG, Samuel APS, Raymond KN (2009) From antenna to assay: lessons learned in lanthanide luminescence. Acc Chem Res 42:542–552

    Article  Google Scholar 

  8. Blasse G, Grabmaier BC (1994) Luminescent materials. Springer, Berlin

    Book  Google Scholar 

  9. Blasse G (1992) Vibronic transitions in rare earth spectroscopy. Int Rev Phys Chem 11:71–100

    Article  Google Scholar 

  10. Carnall WT, Fields PR, Rajnak K (1968) Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu3+. J Chem Phys 49:4450–4455

    Article  Google Scholar 

  11. Carnall WT, Fields PR, Rajnak K (1968) Electronic energy levels of the trivalent lanthanide aquo ions. III. Tb3+. J Chem Phys 49:4447–4449

    Article  Google Scholar 

  12. Carnall WT, Fields PR, Rajnak K (1968) Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J Chem Phys 49:4424–4442

    Article  Google Scholar 

  13. Di Bartolo B (1968) Optical interactionin solids. Wiley, New York

    Google Scholar 

  14. Blasse G, Dirksen GJ, Meijerink A (1990) The luminescence of ytterbium(II) in strontium tetraborate. Chem Phys Lett 167:41–44

    Article  Google Scholar 

  15. Weissman SI (1942) Intramolecular energy transfer: the fluorescence of complexes of europium. J Chem Phys 10:214–217

    Article  Google Scholar 

  16. Crosby GA, Whan RE, Alire RM (1961) Intramolecular energy transfer in rare earth chelates–role of the triplet state. J Chem Phys 34:743–748

    Article  Google Scholar 

  17. Crosby GA, Whan RE, Freeman J (1962) Spectroscopic studies of rare earth chelates. J Phys Chem 66:2493–2499

    Article  Google Scholar 

  18. Sato S, Wada M (1970) Relations between intramolecular energy transfer efficiencies and triplet state energies in rare earth β-diketone chelates. Bull Chem Soc Jpn 43:1955–1962

    Article  Google Scholar 

  19. Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21:836–850

    Article  Google Scholar 

  20. Brown TD, Shepherd TM (1973) Factors affecting the quantum efficiencies of fluorescent terbium(III) chelates in the solid state. J Chem Soc Dalton Trans:336–341

    Google Scholar 

  21. Balzani V, Moggi L, Manfrin MF, Bolletta F (1975) Quenching and sensitization process of coordination compounds. Coord Chem Rev 15:321–433

    Google Scholar 

  22. SL W, YL W, Yang YS (1992) Rare earth(iii) complexes with indole-derived acetylacetones II. Luminescent intensity for europium(iii) and terbium(iii) complexes. J Alloys Compd 180:399–402

    Article  Google Scholar 

  23. Song YS, Yan B, Chen ZX (2004) Different crystal structure and photophysical properties of rare earth complexes with 5-bromonicotinic acid. J Solid State Chem 177:3805–3814

    Google Scholar 

  24. Yan B, Zhou B Photophysical properties of dysprosium complexes with aromatic carboxylic acids by molecular spectroscopy. J Photochem Photobiol A Chem 171:181–186

    Google Scholar 

  25. Wang QM, Yan B, Zhang XH (2005) Photophysical properties of novel rare earth complexes with long chain mono-eicosyl cis-butene dicarboxylate. J Photochem Photobiol A Chem 174:119–124

    Article  Google Scholar 

  26. Petoud S, Bunzli JCG, Glanzman T, Piguet C, Xiang Q, Thummel RP (1999) Influence of charge-transfer states on the Eu(III) luminescence in mononuclear triple helical complexes with tridentate aromatic ligands. J Lumin 82:69–79

    Article  Google Scholar 

  27. Faustino WM, Malta OL, de Sa GF (2005) Intramolecular energy transfer through charge transfer state in lanthanide compounds: a theoretical approach. J Chem Phys122:317–325

    Google Scholar 

  28. Daleo A, Picot A, Beeby A, Williams JAG, Le Guennic B, Andraud C, Maury O (2008) Efficient sensitization of europium, ytterbium, and neodymium functionalized tris-dipicolinate lanthanide complexes through tunable charge-transfer excited states. Inorg Chem 47:10258–10268

    Article  Google Scholar 

  29. Fonger WH, Struck CW (1970) Eu3+ 5D resonance quenching to the charge-transfer states in Y2O2S, La2O2S, and LaOCl. J Chem Phys 52:6364–6371

    Article  Google Scholar 

  30. Ward MD (2007) Transition-metal sensitized near-infrared luminescence from lanthanides in d-f heteronuclear arrays. Coord Chem Rev 251:1663–1677

    Google Scholar 

  31. Kleinerman M (1964) Energy migration in lanthanide chelates. Bull Am Phys Soc 9:265–269

    Google Scholar 

  32. Yang C, LM F, Wang Y, Zhang JP, Wong WT, Ai XC, Qiao YF, Zou BS, Gui LL (2004) A highly luminescent europium complex showing visible-light-sensitized red emission: direct observation of the singlet pathway. Angew Chem Int Ed 43:5010–5013

    Article  Google Scholar 

  33. Yan B, Zhang HJ, Wang SB, Ni JZ (1998) Intramolecular energy transfer mechanism between ligands in ternary complexes with aromatic acids and 1,10-phenanthroline. J Photochem Photobiol A Chem 116:209–214

    Article  Google Scholar 

  34. Yang JH, Zhu GY, Wang H (1989) Application of the co-luminescence effect of rare earths: simultaneous determination of trace amounts of samarium and europium in solution. Analyst 114:1417–1419

    Article  Google Scholar 

  35. Carlos LD, Ferreira RAS, Bermudez VD, Ribeiro JLS (2009) Rare earth-containing light-emitting organic–inorganic hybrids: a bet on the future. Adv Mater 21:509534

    Article  Google Scholar 

  36. Binnemans K (2009) Rare earth-based luminescent hybrid materials. Chem Rev 109:42834374

    Article  Google Scholar 

  37. Yan B (2012) Recent progress on photofunctional rare earth hybrid materials. RSC Adv 2:9304–9324

    Article  Google Scholar 

  38. Feng J, Zhang HJ (2013) Hybrid materials based on rare earth organic complexes: a review. Chem Soc Rev 42:387–410

    Article  Google Scholar 

  39. Zhang HJ, Niu CJ, Feng J (2014) Rare earth organic-inorganic hybrid luminescent materials. Scientific Press. (in Chinese)

    Google Scholar 

  40. Sanchez C, Ribot F (1994) Design of hybrid organic-inorganic materials synthesized via sol-gel chemistry. New J Chem 18:1007–1047

    Google Scholar 

  41. Yan B, Zhang HJ, Wang SB, Ni JZ (1997) Luminescence properties of the ternary rare earth complexes with beta-diketones and 1,10-phenanthroline incorporated in silica matrix by a sol-gel method. Mater Chem Phys 51:92–96

    Article  Google Scholar 

  42. Tanner PA, Yan B, Zhang HJ (2000) Preparation and luminescence properties of sol-gel hybrid materials incorporated with europium complexes. J Mater Chem 35:4325–4328

    Google Scholar 

  43. Yan B, Wang QM (2004) In-situ composition and luminescence of terbium coordination polymers/PEMA hybrid thick films. Opt Mater 27:533–537

    Article  Google Scholar 

  44. LS F, Meng QG, Zhang HJ, Wang SB, Yang KY, Ni JZ (2000) In situ synthesis of terbium-benzoic acid complex in sol-gel derived silica by a two-step sol-gel method. J Phys Chem Sol 61:1877–1881

    Article  Google Scholar 

  45. Dang S, Sun LN, Zhang HJ, Guo XM, Li ZF, Feng J, Guo HD, Guo ZY (2008) Near-infrared luminescence from sol-gel materials doped with holmium(III) and thulium(III) complexes. J Phys Chem C 112:13240–13247

    Google Scholar 

  46. Pecoraro E, Ferreira RAS, Molina C, Ribeiro SJL, Messsaddeq Y, Carlos LD (2008) Photoluminescence of bulks and thin films of Eu3+-doped organic/inorganic hybrids. J Alloys Compds 451:136–139

    Article  Google Scholar 

  47. Franville AC, Zambon D, Mahiou R (2000) Luminescence behavior of sol−gel-derived hybrid materials resulting from covalent grafting of a chromophore unit to different organically modified alkoxysilanes. Chem Mater 12:428–435

    Article  Google Scholar 

  48. Minoofar PN, Hernandez R, Chia S, Dunn B, Zink JI, Franville AC (2002) Placement and characterization of pairs of luminescent molecules in spatially separated regions of nanostructured thin films. J Am Chem Soc 124:14388–14396

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Yan, B. (2017). Rare Earth, Rare Earth Luminescence, Luminescent Rare Earth Compounds, and Photofunctional Rare Earth Hybrid Materials. In: Photofunctional Rare Earth Hybrid Materials. Springer Series in Materials Science, vol 251. Springer, Singapore. https://doi.org/10.1007/978-981-10-2957-8_1

Download citation

Publish with us

Policies and ethics