Instruments Unheard of: On the Role of Familiarity and Sound Source Categories in Timbre Perception

  • Kai Siedenburg


Musical timbre has traditionally been treated as a sensory phenomenon, that is, as a “surface feature” that resides in the musical moment. The role of familiarity with sound source categories and instrument families has remained unexplored. The current chapter takes a dedicatedly cognitive view on timbre and argues that long-term familiarity and knowledge about instrument categories affect even such supposedly low-level tasks as dissimilarity ratings. As a background, the chapter provides a conceptual framework for the notion of timbre, as well as an outline of basic results from timbre dissimilarity ratings and instrument identification. Results from a previous study on the role of sound source categories in timbre dissimilarity ratings are then discussed in depth (Siedenburg et al. in Frontiers in Psychology 6, 2016b). This study collected timbre dissimilarity ratings for tones from acoustic musical instruments as well as for novel, digitally transformed tones. The main pieces of evidence to be discussed come from rating asymmetries and a regression model. It is argued that timbre perception is characterized by an interplay of sensory and categorical representations, reflecting acoustic facets and learned sound source and instrument categories of musical instruments. Implications for the design of novel digital musical instrument design are being discussed.


Sound Source Musical Instrument Perceptual Representation Categorical Predictor Temporal Fine Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Portions of this article are based on two previous publications (Siedenburg et al. 2016a; Siedenburg et al. 2016b). I would like to thank my co-authors Stephen McAdams, Ichiro Fujinaga, and Kiray Jones-Mollerup for their help.


  1. Agus, T. R., Suied, C., Thorpe, S. J., & Pressnitzer, D. (2012). Fast recognition of musical sounds based on timbre. The Journal of the Acoustical Society of America, 131(5), 4124–4133.CrossRefGoogle Scholar
  2. Agus, T. R., Thorpe, S. J., & Pressnitzer, D. (2010). Rapid formation of robust auditory memories: Insights from noise. Neuron, 66, 610–618.CrossRefGoogle Scholar
  3. Caclin, A., McAdams, S., Smith, B. K., & Winsberg, S. (2005). Acoustic correlates of timbre space dimensions: A confirmatory study using synthetic tones. The Journal of the Acoustical Society of America, 118(1), 471–482.CrossRefGoogle Scholar
  4. Elliott, T., Hamilton, L., & Theunissen, F. (2013). Acoustic structure of the five perceptual dimensions of timbre in orchestral instrument tones. The Journal of the Acoustical Society of America, 133(1), 389–404.CrossRefGoogle Scholar
  5. Giordano, B. L., & McAdams, S. (2010). Sound source mechanics and musical timbre perception: Evidence from previous studies. Music Perception, 28(2), 155–168.CrossRefGoogle Scholar
  6. Grey, J. M. (1975). An exploration of musical timbre (Unpublished doctoral dissertation). CCRMA, Stanford University.Google Scholar
  7. Hajda, J. M., Kendall, R. A., Carterette, E. C., & Harshberger, M. L. (1997). Methodological issues in timbre research. In I. Deliège & J. Sloboda (Eds.), Perception and cognition of music (pp. 253–306). New York, NY: Psychology Press.Google Scholar
  8. Halpern, A. R., Zatorre, R. J., Bouffard, M., & Johnson, J. A. (2004). Behavioral and neural correlates of perceived and imagined musical timbre. Neuropsychologia, 42(9), 1281–1292.CrossRefGoogle Scholar
  9. Handel, S. (1995). Timbre perception and auditory object identification. In B. C. Moore (Ed.), Hearing (Vol. 2, pp. 425–461). San Diego, CA: Academic Press.CrossRefGoogle Scholar
  10. Handel, S., & Erickson, M. L. (2004). Sound source identification: The possible role of timbre transformations. Music Perception, 21(4), 587–610.CrossRefGoogle Scholar
  11. Huron, D. (2006). Sweet anticipation: Music and the psychology of expectation. Cambridge, MA: MIT Press.Google Scholar
  12. Krumhansl, C. L. (1989). Why is musical timbre so hard to understand? In S. Nielzén & O. Olsson (Eds.), Structure and perception of electroacoustic sound and music (Vol. 846, pp. 43–53). Amsterdam, The Netherlands: Excerpta Medica.Google Scholar
  13. Krumhansl, C. L. (1990). Cognitive foundations of musical pitch. Oxford, UK: Oxford University Press.Google Scholar
  14. Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29(1), 1–27.MathSciNetCrossRefzbMATHGoogle Scholar
  15. Lakatos, S. (2000). A common perceptual space for harmonic and percussive timbres. Perception and Psychophysics, 62(7), 1426–1439.CrossRefGoogle Scholar
  16. Lindau, A., Erbes, V., Lepa, S., Maempel, H.-J., Brinkman, F., & Weinzierl, S. (2014). A spatial audio quality inventory (SAQI). Acta Acustica United with Acustica, 100(5), 984–994.CrossRefGoogle Scholar
  17. Marozeau, J., de Cheveigné, A., McAdams, S., & Winsberg, S. (2003). The dependency of timbre on fundamental frequency. The Journal of the Acoustical Society of America, 114(5), 2946–2957.CrossRefGoogle Scholar
  18. McAdams, S. (1993). Recognition of sound sources and events. In S. McAdams & E. Bigand (Eds.), Thinking in sound: The cognitive psychology of human audition (pp. 146–198). Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
  19. McAdams, S. (2013). Musical timbre perception. In D. Deutsch (Ed.), The psychology of music (3rd ed., pp. 35–67). San Diego, CA: Academic Press.CrossRefGoogle Scholar
  20. McAdams, S., Beauchamp, J. W., & Meneguzzi, S. (1999). Discrimination of musical instrument sounds resynthesized with simplified spectrotemporal parameters. The Journal of the Acoustical Society of America, 105(2), 882–897.CrossRefGoogle Scholar
  21. McAdams, S., Roussarie, V., Chaigne, A., & Giordano, B. L. (2010). The psychomechanics of simulated sound sources: Material properties of impacted thin plates. The Journal of the Acoustical Society of America, 128(3), 1401–1413.CrossRefGoogle Scholar
  22. McAdams, S., Winsberg, S., Donnadieu, S., De Soete, G., & Krimphoff, J. (1995). Perceptual scaling of synthesized musical timbres: Common dimensions, specificities, and latent subject classes. Psychological Research, 58(3), 177–192.CrossRefGoogle Scholar
  23. Pantev, C., Roberts, L. E., Schulz, M., Engelien, A., & Ross, B. (2001). Timbre-specific enhancement of auditory cortical representations in musicians. Neuro Report, 12(1), 169–174.Google Scholar
  24. Patterson, R. D., Robinson, K., Holdsworth, J., McKeown, D., Zhang, C., & Allerhand, M. (1992). Complex sounds and auditory images. Auditory Physiology and Perception, 83, 429–446.CrossRefGoogle Scholar
  25. Peeters, G., Giordano, B. L., Susini, P., Misdariis, N., & McAdams, S. (2011). The Timbre Toolbox: Extracting audio descriptors from musical signals. The Journal of the Acoustical Society of America, 130(5), 2902–2916.CrossRefGoogle Scholar
  26. Plomp, R. (1970). Timbre as a multidimensional attribute of complex tones. In R. Plomp & G. F. Smoorenburg (Eds.), Frequency analysis and periodicity detection in hearing (pp. 397–414). Leiden, The Netherlands: Suithoff.Google Scholar
  27. Shahin, A. J., Roberts, L. E., Chau, W., Trainor, L. J., & Miller, L. M. (2008). Music training leads to the development of timbre-specific gamma band activity. Neuroimage, 41(1), 113–122.CrossRefGoogle Scholar
  28. Shamma, S., & Fritz, J. (2014). Adaptive auditory computations. Current Opinion in Neurobiology, 25, 164–168.CrossRefGoogle Scholar
  29. Siedenburg, K., Fujinaga, I., & McAdams, S. (2016a). A comparison of approaches to timbre descriptors in music information retrieval and music psychology. Journal of New Music Research (in press).Google Scholar
  30. Siedenburg, K., Jones-Mollerup, K., & McAdams, S. (2016b). Acoustic and categorical dissimilarity of musical timbre: Evidence from asymmetries between acoustic and chimeric sounds. Frontiers in Psychology, 6(1977). doi: 10.3389/fpsyg.2015.01977
  31. Siedenburg, K., & McAdams, S. (2016). The role of long-term familiarity and attentional maintenance in auditory short-term memory for timbre. Memory, published online. doi: 10.1080/09658211.2016.1197945.
  32. Smith, Z. M., Delgutte, B., & Oxenham, A. J. (2002). Chimaeric sounds reveal dichotomies in auditory perception. Nature, 416(6876), 87–90.CrossRefGoogle Scholar
  33. Srinivasan, A., Sullivan, D., & Fujinaga, I. (2002). Recognition of isolated instrument tones by conservatory students. In Proceedings of the 2002 International Conference on Music Perception and Cognition, Sydney (pp. 17–21), July 17–21.Google Scholar
  34. Strait, D. L., Chan, K., Ashley, R., & Kraus, N. (2012). Specialization among the specialized: Auditory brainstem function is tuned into timbre. Cortex, 48(3), 360–362.CrossRefGoogle Scholar
  35. Tversky, A. (1977). Features of similarity. Psychological Review, 84(4), 327–352.CrossRefGoogle Scholar
  36. Wessel, D. L. (1973). Psychoacoustics and music: A report from Michigan State University. PACE: Bulletin of the Computer Arts Society, 30, 1–2.Google Scholar
  37. Winsberg, S., & De Soete, G. (1993). A latent class approach to fitting the weighted Euclidean model. CLASCAL. Psychometrika, 58(2), 315–330.CrossRefGoogle Scholar
  38. Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109–130.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Medical Physics and Acoustics—Signal Processing GroupUniversity of OldenburgOldenburgGermany

Personalised recommendations