Skip to main content

Computerized Prediction of Treatment Outcomes and Radiomics Analysis

  • Chapter
  • First Online:
  • 1137 Accesses

Abstract

Imaging has been traditionally used in radiotherapy for the purposes of tumor delineation and treatment planning. Recent evidence suggests that such imaging information could be also used as biomarkers for predicting response and personalized treatment as part of an emerging field called “radiomics.” In this chapter, we discuss the application of imaging-based approaches to predict radiotherapy outcomes from single and hybrid imaging modalities. We describe the different steps involved in radiomics analysis and present examples from our own experiences. We highlight the current challenges and future potentials for image-based decision support in radiotherapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Benz MR, Allen-Auerbach MS, Eilber F C, Chen HJJ, Dry S, Phelps ME, Czernin J, Weber WA (2008) Combined assessment of metabolic and volumetric changes for assessment of tumor response in patients with soft-tissue sarcomas. J Nucl Med 49:1579–1584

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradley J (2004) The radiological society of North America. Chicago. Nov 28–Dec 3, vol. Series

    Google Scholar 

  • Bradley J, Thorstad WL, Mutic S, Miller T R, Dehdashti F, Siegel B A, Bosch W, Bertrand R J (2004a) Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 59:78–86

    Article  PubMed  Google Scholar 

  • Bradley JD, Perez CA, Dehdashti F, Siegel BA (2004b) Implementing biologic target volumes in radiation treatment planning for non-small cell lung cancer. J Nucl Med 45(Suppl 1):96S–101S

    PubMed  Google Scholar 

  • Castellano G, Bonilha L, Li LM, Cendes F (2004) Texture analysis of medical images. Clin Radiol 59:1061–1069

    Article  CAS  PubMed  Google Scholar 

  • Castleman KR (1996) Digital image processing. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Cheng NM, Fang YH, Yen TC (2013) The promise and limits of PET texture analysis. Ann Nucl Med 27:867–869

    Article  CAS  PubMed  Google Scholar 

  • Chicklore S, Goh V, Siddique M, Roy A, Marsden P, Cook GR (2013) Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging 40:133–140

    Article  PubMed  Google Scholar 

  • Ciernik IF (2004) Radiotherapy of rectal cancer. Schweiz Rundsch Med Prax 93:1441–1446

    CAS  Google Scholar 

  • Condeelis J, Weissleder R (2010) In vivo imaging in cancer. Cold Spring Harb Perspect Biol 2:a003848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Crevoisier R, Tucker SL, Dong L, Mohan R, Cheung R, Cox JD, Kuban DA (2005) Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 62:965–973

    Article  PubMed  Google Scholar 

  • Deasy JO, El Naqa I (2007) In: Mehta M, Bentzen S (eds) Radiation oncology advances. Springer, New York

    Google Scholar 

  • Denecke T, Rau B, Hoffmann KT, Hildebrandt B, Ruf J, Gutberlet M, Hünerbein M, Felix R, Wust P, Amthauer H (2005) Comparison of CT, MRI and FDG-PET in response prediction of patients with locally advanced rectal cancer after multimodal preoperative therapy: Is there a benefit in using functional imaging? Eur Radiol 15:1658–1666

    Article  CAS  PubMed  Google Scholar 

  • Einarsdottir H, Karlsson M, Wejde J, Bauer HCF (2004) Diffusion-weighted MRI of soft tissue tumours. Eur Radiol 14:959–963

    Article  PubMed  Google Scholar 

  • El Naqa I (2013) In: Starkschall G, Siochi C (eds) Informatics in radiation oncology. CRC Press/Taylor and Francis, Boca Raton, pp 257–275

    Google Scholar 

  • El Naqa I (2014) The role of quantitative PET in predicting cancer treatment outcomes. Clin Transl Imaging 2:305–320

    Article  Google Scholar 

  • El-Naqa I, Yang Y, Galatsanos NP, Nishikawa RM, Wernick MN (2004) A similarity learning approach to content-based image retrieval: application to digital mammography. IEEE Trans Med Imaging 23:1233–1244

    Article  PubMed  Google Scholar 

  • El Naqa I, Kawrakow I, Fippel M, Siebers JV, Lindsay PE, Wickerhauser MV, Vicic M, Zakarian K, Kauffmann N, Deasy JO (2005) A comparison of Monte Carlo dose calculation denoising techniques. Phys Med Biol 50:909–922

    Article  CAS  PubMed  Google Scholar 

  • El Naqa I, Bradley JD, Lindsay PE, Blanco AI, Vicic M, Hope AJ, Deasy JO (2006a) Multi-variable modeling of radiotherapy outcomes including dose-volume and clinical factors. Int J Radiat Oncol Biol Phys 64:1275–1286

    Article  PubMed  Google Scholar 

  • El Naqa I, Low D, Bradley J, Vicic M, Deasy J (2006b) Deblurring of breathing motion artifacts in thoracic PET images by deconvolution methods. Med Phys 33:3587–3600

    Article  PubMed  Google Scholar 

  • El Naqa I, Suneja G, Lindsay PE, Hope AJ, Alaly JR, Vicic M, Bradley JD, Apte A, Deasy JO (2006c) Dose response explorer: an integrated open-source tool for exploring and modelling radiotherapy dose-volume outcome relationships. Phys Med Biol 51:5719–5735

    Article  CAS  PubMed  Google Scholar 

  • El Naqa I, Grigsby P, Apte A, Kidd E, Donnelly E, Khullar D, Chaudhari S, Yang D, Schmitt M, Laforest R, Thorstad W, Deasy JO (2009) Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recogn 42:1162–1171

    Article  CAS  Google Scholar 

  • El Naqa I, Deasy JO, Mu Y, Huang E, Hope AJ, Lindsay PE, Apte A, Alaly J, Bradley JD (2010) Datamining approaches for modeling tumor control probability. Acta Oncol 49:1363–1373

    Article  Google Scholar 

  • El Naqa I, Li R, Murphy MJ (eds) (2015a) Machine learning in radiation oncology: theory and application. Springer International Publishing, Cham

    Google Scholar 

  • El Naqa I, Li R, Murphy MJ (eds) (2015b) Machine learning in radiation oncology: theory and application. Springer International Publishing, Cham

    Google Scholar 

  • Erdi YE, Macapinlac H, Rosenzweig KE, Humm JL, Larson SM, Erdi AK, Yorke ED (2000) Use of PET to monitor the response of lung cancer to radiation treatment. Eur J Nucl Med 27:861–866

    Article  CAS  PubMed  Google Scholar 

  • Gulliford SL, Webb S, Rowbottom CG, Corne DW, Dearnaley DP (2004) Use of artificial neural networks to predict biological outcomes for patients receiving radical radiotherapy of the prostate. Radiother Oncol 71:3–12

    Article  PubMed  Google Scholar 

  • Gunturk BK, Li X (eds) (2012) Image restoration: fundamentals and advances. CRC Press/Taylor and Francis group, Boca Raton

    Google Scholar 

  • Haralick R, Shanmugam K, Dinstein I (1973) Texture features for image classification. IEEE Trans Sys Man Cyb SMC 3:610–621

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Friedman JH (2001) The elements of statistical learning : data mining, inference, and prediction: with 200 full-color illustrations. Springer, New York

    Google Scholar 

  • Haykin S (1999) Neural networks: a comprehensive foundation. Prentice Hall, New York

    Google Scholar 

  • Hicks RJ, Mac Manus MP, Matthews JP, Hogg A, Binns D, Rischin D, Ball DL, Peters LJ (2004) Early FDG-PET imaging after radical radiotherapy for non-small-cell lung cancer: Inflammatory changes in normal tissues correlate with tumor response and do not confound therapeutic response evaluation Int J Radiat Oncol Biol Phys 60:412–418

    Google Scholar 

  • Jain AK (1989) Fundamentals of digital image processing. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Kalff V, Duong C, Drummond EG, Matthews JP, Hicks RJ (2006) Findings on 18F-FDG PET scans after neoadjuvant chemoradiation provides prognostic stratification in patients with locally advanced rectal carcinoma subsequently treated by radical surgery. J Nucl Med 47:14–22

    PubMed  Google Scholar 

  • Khan FM (2007) Treatment planning in radiation oncology. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, Forster K, Aerts HJ, Dekker A, Fenstermacher D, Goldgof DB, Hall LO, Lambin P, Balagurunathan Y, Gatenby R A, Gillies R J (2012) Radiomics: the process and the challenges. Magn Reson Imaging 30:1234–1248

    Google Scholar 

  • Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, Aerts H J (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446

    Google Scholar 

  • Larson SM, Erdi Y, Akhurst T, Mazumdar M, Macapinlac HA, Finn RD, Casilla C, Fazzari M, Srivastava N, Yeung HW, Humm JL, Guillem J, Downey R, Karpeh M, Cohen AE, Ginsberg R (1999) Tumor treatment response based on visual and quantitative changes in global tumor glycolysis using PET-FDG imaging. The visual response score and the change in total lesion glycolysis. Clin Positron Imaging 2:159–171

    Google Scholar 

  • Mac Manus MP, Hicks RJ (2003) PET scanning in lung cancer: current status and future directions. Semin Surg Oncol 21:149–155

    Article  PubMed  Google Scholar 

  • Mac Manus MP, Hicks RJ, Matthews JP, McKenzie A, Rischin D, Salminen EK, Ball DL (2003) Positron emission tomography is superior to computed tomography scanning for response-assessment after radical radiotherapy or chemoradiotherapy in patients with non-small-cell lung cancer. J Clin Oncol 21:1285–1292

    Google Scholar 

  • MacManus MR, Hicks R, Fisher R, Rischin D, Michael M, Wirth A, Ball DL (2003) FDG-PET-detected extracranial metastasis in patients with non-small cell lung cancer undergoing staging for surgery or radical radiotherapy – survival correlates with metastatic disease burden. Acta Oncol 42:48–54

    Article  PubMed  Google Scholar 

  • Miller TR, Grigsby PW (2002) Measurement of tumor volume by PET to evaluate prognosis in patients with advanced cervical cancer treated by radiation therapy. Int J Radiat Oncol Biol Phys 53:353–359

    Article  PubMed  Google Scholar 

  • Munley MT, Lo JY, Sibley GS, Bentel GC, Anscher MS, Marks LB (1999) A neural network to predict symptomatic lung injury. Phys Med Biol 44:2241–2249

    Article  CAS  PubMed  Google Scholar 

  • Mutic S, Malyapa RS, Grigsby PW, Dehdashti F, Miller TR, Zoberi I, Bosch WR, Esthappan J, Low DA (2003) PET-guided IMRT for cervical carcinoma with positive para-aortic lymph nodes-a dose-escalation treatment planning study. Int J Radiat Oncol Biol Phys 55:28–35

    Google Scholar 

  • Newbold K, Partridge M, Cook G, Sohaib SA, Charles-Edwards E, Rhys-Evans P, Harrington K, Nutting C (2006) Advanced imaging applied to radiotherapy planning in head and neck cancer: a clinical review. Br J Radiol 79:554–561

    Google Scholar 

  • O’Sullivan F, Roy S, Eary J (2003) A statistical measure of tissue heterogeneity with application to 3D PET sarcoma data. Biostat 4:433–448

    Article  Google Scholar 

  • O’Sullivan F, Roy S, O’Sullivan J, Vernon C, Eary J (2005) Incorporation of tumor shape into an assessment of spatial heterogeneity for human sarcomas imaged with FDG-PET. Biostat 6:293–301

    Article  Google Scholar 

  • Pandit N, Gonen M, Krug L, Larson SM (2003) Prognostic value of [18F]FDG-PET imaging in small cell lung cancer. Eur J Nucl Med Mol Imaging 30:78–84

    Article  PubMed  Google Scholar 

  • Piet D, Frederik De K, Vincent V, Sigrid S, Robert H, Sandra N (2008) Diffusion-weighted magnetic resonance imaging to evaluate major salivary gland function before and after radiotherapy. Int J Radiat Oncol Biol Phys 71:1365

    Article  Google Scholar 

  • Ramsey CR, Langen KM, Kupelian PA, Scaperoth DD, Meeks SL, Mahan SL, Seibert RM (2006) A technique for adaptive image-guided helical tomotherapy for lung cancer. Int J Radiat Oncol Biol Phys 64:1237–1244

    Google Scholar 

  • Reader AJ, Matthews JC, Sureau FC, Comtat C, Trebossen R, Buvat I (2006) Nuclear science symposium conference record, 2006. IEEE,Oct 29 2006–Nov 1 2006), vol. Series 3) pp 1752–1756

    Google Scholar 

  • Sahiner B, Chan H-P, Hadjiiski L (2008) Classifier performance prediction for computer-aided diagnosis using a limited dataset. Med Phys 35:1559–1570

    Article  PubMed  PubMed Central  Google Scholar 

  • Seibert RM, Ramsey CR, Hines JW, Kupelian PA, Langen KM, Meeks SL, Scaperoth DD (2007) A model for predicting lung cancer response to therapy. Int J Radiat Oncol Biol Phys 67:601–609

    Google Scholar 

  • Shapeero LG, Vanel D, Verstraete KL, Bloem JL (2002) Fast magnetic resonance imaging with contrast for soft tissue sarcoma viability. Clin Orthop Relat Res:212–227

    Google Scholar 

  • Shields AF (2006) Positron emission tomography measurement of tumor metabolism and growth: its expanding role in oncology. Mol Imaging Biol 8:141–150

    Article  PubMed  Google Scholar 

  • Sourbron SP, Buckley DL (2011) On the scope and interpretation of the Tofts models for DCE-MRI. Magn Reson Med 66:735–745

    Article  PubMed  Google Scholar 

  • Stasi M, Munoz F, Fiorino C, Pasquino M, Baiotto B, Marini P, Malinverni G, Valdagni R, Gabriele P (2006) Emptying the rectum before treatment delivery limits the variations of rectal dose – volume parameters during 3DCRT of prostate cancer. Radiother Oncol 80:363–370

    Google Scholar 

  • Steel GG (2002) Basic clinical radiobiology. London/New York: Arnold/Oxford University Press

    Google Scholar 

  • Strauss LG, Conti PS (1991) The applications of PET in clinical oncology. J Nucl Med 32:623–648

    CAS  PubMed  Google Scholar 

  • Su M, Miftena M, Whiddon C, Sun X, Light K, Marks L (2005) An artificial neural network for predicting the incidence of radiation pneumonitis. Med Phys 32:318–325

    Article  PubMed  Google Scholar 

  • Thorwarth D, Eschmann S-M, Holzner F, Paulsen F, Alber M (2006) Combined uptake of [18F]FDG and [18F]FMISO correlates with radiation therapy outcome in head-and-neck cancer patients. Radiother Oncol 80:151–156

    Article  CAS  PubMed  Google Scholar 

  • Thorwarth D, Eschmann S-M, Paulsen F, Alber M (2007) A model of reoxygenation dynamics of head-and-neck tumors based on serial 18F-fluoromisonidazole positron emission tomography investigations. Int J Radiat Oncol Biol Phys 68:515–521

    Article  CAS  PubMed  Google Scholar 

  • Thorwarth D, Muller AC, Pfannenberg C, Beyer T (2013) Combined PET/MR imaging using (68)Ga-DOTATOC for radiotherapy treatment planning in meningioma patients. Recent Results Cancer Res 194:425–439

    Article  CAS  PubMed  Google Scholar 

  • Tixier F, Hatt M, Le Rest CC, Le Pogam A, Corcos L, Visvikis D (2012) Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J Nucl Med 53:693–700

    Article  PubMed  PubMed Central  Google Scholar 

  • Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7:91–101

    Article  CAS  PubMed  Google Scholar 

  • Toloza EM, Harpole L, McCrory DC (2003) Noninvasive staging of non-small cell lung cancer: a review of the current evidence. Chest 123:137S–146S

    Article  PubMed  Google Scholar 

  • Tomatis S, Rancati T, Fiorino C, Vavassori V, Fellin G, Cagna E, Mauro FA, Girelli G, Monti A, Baccolini M, Naldi G, Bianchi C, Menegotti L, Pasquino M, Stasi M, Valdagni R (2012) Late rectal bleeding after 3D–CRT for prostate cancer: development of a neural-network-based predictive model. Phys Med Biol 57:1399

    Google Scholar 

  • Turkheimer FE, Aston JA, Asselin MC, Hinz R (2006) Multi-resolution Bayesian regression in PET dynamic studies using wavelets. NeuroImage 32:111–121

    Article  CAS  PubMed  Google Scholar 

  • Vaidya M, Creach KM, Frye J, Dehdashti F, Bradley J D, El Naqa I (2012) Combined PET/CT image characteristics for radiotherapy tumor response in lung cancer. Radiothe Oncology J Eur Soc Therap Radiol Oncol 102:239–245

    Article  Google Scholar 

  • Vallieres M, Freeman CR, Skamene SR, El Naqa I (2015) A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol 60:5471–5496

    Article  CAS  PubMed  Google Scholar 

  • van Rijswijk CSP, Geirnaerdt MJA, Hogendoorn PCW, Peterse JL, van Coevorden F, Taminiau AHM, Tollenaar RAEM, Kroon BBR, Bloem JL (2003) Dynamic contrast-enhanced MR imaging in monitoring response to isolated limb perfusion in high-grade soft tissue sarcoma: initial results. Eur Radiol 13:1849–1858

    Google Scholar 

  • Vanel D, Bonvalot S, Guinebretière JM, Petrow P, Dromain C, Caillet H (2004) MR imaging in the evaluation of isolated limb perfusion: a prospective study of 18 cases. Skelet Radiol 33:150–156

    Article  Google Scholar 

  • Vapnik V (1998) Statistical learning theory. Wiley, New York

    Google Scholar 

  • Verhagen AF, Bootsma GP, Tjan-Heijnen VC, van der Wilt GJ, Cox AL, Brouwer MH, Corstens FH, Oyen WJ (2004) FDG-PET in staging lung cancer: how does it change the algorithm? Lung Cancer 44:175–181

    Google Scholar 

  • Watabe H, Ikoma Y, Kimura Y, Naganawa M, Shidahara M (2006) PET kinetic analysis – compartmental model. Ann Nucl Med 20:583–588

    Article  CAS  PubMed  Google Scholar 

  • Webb S (2001) The physics of three-dimensional radiation therapy: conformal radiotherapy, radiosurgery, and treatment planning. Institute of Physics Pub, Bristol/Philadelphia

    Google Scholar 

  • Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS (2008) Molecular imaging in drug development. Nat Rev Drug Discov 7:591–607

    Article  CAS  PubMed  Google Scholar 

  • Yang D-H, Min J-J, Jeong Y, Ahn J-S, Kim Y-K, Cho S-H, Chung I-J, Bom H-S, Kim H-J, Lee J-J (2009) The combined evaluation of interim contrast-enhanced computerized tomography (CT) and FDG-PET/CT predicts the clinical outcomes and may impact on the therapeutic plans in patients with aggressive non-Hodgkin’s lymphoma. Ann Hematol 88:425–432

    Google Scholar 

  • Zaidi H, Mawlawi O, Orton CG (2007) Point/counterpoint. Simultaneous PET/MR will replace PET/CT as the molecular multimodality imaging platform of choice. Med Phys 34:1525–1528

    Article  PubMed  Google Scholar 

  • Zaidi H, Abdoli M, Fuentes CL, El Naqa IM (2012) Comparative methods for PET image segmentation in pharyngolaryngeal squamous cell carcinoma. Eur J Nucl Med Mol Imaging 39:881–891

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Tan T (2002) Brief review of invariant texture analysis methods. Pattern Recogn 35:735–747

    Article  Google Scholar 

Download references

Acknowledgments

Part of this work was supported by the Canadian Institutes of Health Research (CIHR) under grant MOP-136774 and by the Stuart and Barbara Padnos Research Fund (grant#G017459, University of Michigan Cancer Center). The author would like also to thank Dr. Carolyn Freeman, Mrs. Monica Serban, Mrs. Krishinima Jeyaseelan, Dr. Ives Levesque and Mr. Martin Carrier-Vallières, and Dr. Jan Seuntjens from McGill University for their collaboration on the Sarcoma Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issam El Naqa PhD, DABR .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

El Naqa, I. (2017). Computerized Prediction of Treatment Outcomes and Radiomics Analysis. In: Arimura, H. (eds) Image-Based Computer-Assisted Radiation Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-10-2945-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2945-5_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2943-1

  • Online ISBN: 978-981-10-2945-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics