Skip to main content

Mobilization and Homing of Bone Marrow Stem Cells After Stroke

  • Chapter
  • First Online:
  • 641 Accesses

Abstract

Generally, bone marrow stem cells (BMSCs) reside in the bone marrow, where the microenvironments maintain a dynamic balance between self-renewal and differentiation. However, BMSCs can also be forced into the blood, a process termed mobilization, which is clinically used to harvest large number of cells for transplantation. On the other side, stroke-induced local and systemic pathological responses also lead to the mobilization of BMSCs to peripheral blood and then “homing” to the damaged regions, which is considered as an important regenerative process. In this chapter, we summarize current understanding of the physiological and pathological mechanisms that guide BMSC mobilization and homing to the damaged brain. The underlying cellular and molecular mechanisms, which largely depend on an interplay between chemokines, chemokine receptors, intracellular signaling, adhesion molecules, and proteases, are also discussed. Increasing the number of BMSC mobilization and homing is critical for the promotion of stroke cell-based therapies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Borlongan CV, et al. Potential of stem/progenitor cells in treating stroke: the missing steps in translating cell therapy from laboratory to clinic. Regen Med. 2008;3(3):249–50.

    Article  PubMed  Google Scholar 

  2. Chopp M, et al. Who’s in favor of translational cell therapy for stroke: STEPS forward please? Cell Transplant. 2009;18(7):691–3.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Stem Cell Therapies as an Emerging Paradigm in Stroke, P. Stem Cell Therapies as an Emerging Paradigm in Stroke (STEPS): bridging basic and clinical science for cellular and neurogenic factor therapy in treating stroke. Stroke. 2009;40(2):510–5.

    Article  Google Scholar 

  4. Herzog EL, Chai L, Krause DS. Plasticity of marrow-derived stem cells. Blood. 2003;102(10):3483–93.

    Article  CAS  PubMed  Google Scholar 

  5. Munoz-Elias G, Woodbury D, Black IB. Marrow stromal cells, mitosis, and neuronal differentiation: stem cell and precursor functions. Stem Cells. 2003;21(4):437–48.

    Article  PubMed  Google Scholar 

  6. Hara K, et al. Neural progenitor NT2N cell lines from teratocarcinoma for transplantation therapy in stroke. Prog Neurobiol. 2008;85(3):318–34.

    Article  CAS  PubMed  Google Scholar 

  7. Hess DC, Borlongan CV. Cell-based therapy in ischemic stroke. Expert Rev Neurother. 2008;8(8):1193–201.

    Article  CAS  PubMed  Google Scholar 

  8. Hess DC, Borlongan CV. Stem cells and neurological diseases. Cell Prolif. 2008;41 Suppl 1:94–114.

    PubMed  Google Scholar 

  9. Kalinkovich A, et al. Blood-forming stem cells are nervous: direct and indirect regulation of immature human CD34+ cells by the nervous system. Brain Behav Immun. 2009;23(8):1059–65.

    Article  CAS  PubMed  Google Scholar 

  10. Dominici M, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.

    Article  CAS  PubMed  Google Scholar 

  11. Majumdar MK, et al. Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. J Cell Physiol. 2000;185(1):98–106.

    Article  CAS  PubMed  Google Scholar 

  12. Caplan AI. The mesengenic process. Clin Plast Surg. 1994;21(3):429–35.

    CAS  PubMed  Google Scholar 

  13. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276(5309):71–4.

    Article  CAS  PubMed  Google Scholar 

  14. Qian H, Le Blanc K, Sigvardsson M. Primary mesenchymal stem and progenitor cells from bone marrow lack expression of CD44 protein. J Biol Chem. 2012;287(31):25795–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wexler SA, et al. Adult bone marrow is a rich source of human mesenchymal ‘stem’ cells but umbilical cord and mobilized adult blood are not. Br J Haematol. 2003;121(2):368–74.

    Article  PubMed  Google Scholar 

  16. Hayashi Y, et al. Bannayan-Zonana syndrome associated with lipomas, hemangiomas, and lymphangiomas. J Pediatr Surg. 1992;27(6):722–3.

    Article  CAS  PubMed  Google Scholar 

  17. Lazarus HM, et al. Human bone marrow-derived mesenchymal (stromal) progenitor cells (MPCs) cannot be recovered from peripheral blood progenitor cell collections. J Hematother. 1997;6(5):447–55.

    CAS  PubMed  Google Scholar 

  18. Pitchford SC, et al. Troubleshooting: quantification of mobilization of progenitor cell subsets from bone marrow in vivo. J Pharmacol Toxicol Methods. 2010;61(2):113–21.

    Article  CAS  PubMed  Google Scholar 

  19. Pitchford SC, et al. Differential mobilization of subsets of progenitor cells from the bone marrow. Cell Stem Cell. 2009;4(1):62–72.

    Article  CAS  PubMed  Google Scholar 

  20. Pelus LM. Peripheral blood stem cell mobilization: new regimens, new cells, where do we stand. Curr Opin Hematol. 2008;15(4):285–92.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu L, et al. Hypoxia-inducible factor-1alpha is essential for hypoxia-induced mesenchymal stem cell mobilization into the peripheral blood. Stem Cells Dev. 2011;20(11):1961–71.

    Article  CAS  PubMed  Google Scholar 

  22. Rochefort GY, et al. Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia. Stem Cells. 2006;24(10):2202–8.

    Article  CAS  PubMed  Google Scholar 

  23. Yu Q, et al. Stromal cell-derived factor-1 alpha alleviates hypoxic-ischemic brain damage in mice. Biochem Biophys Res Commun. 2015;464(2):447–52.

    Article  CAS  PubMed  Google Scholar 

  24. Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol (1985). 2000;88(4):1474–80.

    CAS  Google Scholar 

  25. Semenza GL. HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell. 2001;107(1):1–3.

    Article  CAS  PubMed  Google Scholar 

  26. Ivan M, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292(5516):464–8.

    Article  CAS  PubMed  Google Scholar 

  27. Dafni H, et al. MRI and fluorescence microscopy of the acute vascular response to VEGF165: vasodilation, hyper-permeability and lymphatic uptake, followed by rapid inactivation of the growth factor. NMR Biomed. 2002;15(2):120–31.

    Article  CAS  PubMed  Google Scholar 

  28. Senger DR, et al. Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer Metastasis Rev. 1993;12(3–4):303–24.

    Article  CAS  PubMed  Google Scholar 

  29. Kopp HG, et al. Tie2 activation contributes to hemangiogenic regeneration after myelosuppression. Blood. 2005;106(2):505–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hattori K, et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med. 2001;193(9):1005–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schioppa T, et al. Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med. 2003;198(9):1391–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu X, et al. SDF-1/CXCR4 axis modulates bone marrow mesenchymal stem cell apoptosis, migration and cytokine secretion. Protein Cell. 2011;2(10):845–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stumm RK, et al. A dual role for the SDF-1/CXCR4 chemokine receptor system in adult brain: isoform-selective regulation of SDF-1 expression modulates CXCR4-dependent neuronal plasticity and cerebral leukocyte recruitment after focal ischemia. J Neurosci. 2002;22(14):5865–78.

    CAS  PubMed  Google Scholar 

  34. Mocco J, et al. SDF1-a facilitates Lin-/Sca1+ cell homing following murine experimental cerebral ischemia. PLoS One. 2014;9(1):e85615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hill WD, et al. SDF-1 (CXCL12) is upregulated in the ischemic penumbra following stroke: association with bone marrow cell homing to injury. J Neuropathol Exp Neurol. 2004;63(1):84–96.

    Article  CAS  PubMed  Google Scholar 

  36. Liu P, Xiang JW, Jin SX. Serum CXCL12 levels are associated with stroke severity and lesion volumes in stroke patients. Neurol Res. 2015;37(10):853–8.

    Article  CAS  PubMed  Google Scholar 

  37. Chang YC, et al. Regenerative therapy for stroke. Cell Transplant. 2007;16(2):171–81.

    PubMed  Google Scholar 

  38. Shen LH, et al. Therapeutic benefit of bone marrow stromal cells administered 1 month after stroke. J Cereb Blood Flow Metab. 2007;27(1):6–13.

    Article  PubMed  CAS  Google Scholar 

  39. Wang Y, et al. Roles of chemokine CXCL12 and its receptors in ischemic stroke. Curr Drug Targets. 2012;13(2):166–72.

    Article  CAS  PubMed  Google Scholar 

  40. Wang Y, Deng Y, Zhou GQ. SDF-1alpha/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model. Brain Res. 2008;1195:104–12.

    Article  CAS  PubMed  Google Scholar 

  41. Wang L, et al. Ischemic cerebral tissue and MCP-1 enhance rat bone marrow stromal cell migration in interface culture. Exp Hematol. 2002;30(7):831–6.

    Article  CAS  PubMed  Google Scholar 

  42. Ruster B, et al. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood. 2006;108(12):3938–44.

    Article  PubMed  CAS  Google Scholar 

  43. Sackstein R, et al. Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat Med. 2008;14(2):181–7.

    Article  CAS  PubMed  Google Scholar 

  44. Yilmaz G, et al. Selectin-mediated recruitment of bone marrow stromal cells in the postischemic cerebral microvasculature. Stroke. 2011;42(3):806–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guzman R, et al. Intravascular cell replacement therapy for stroke. Neurosurg Focus. 2008;24(3–4):E15.

    Article  PubMed  Google Scholar 

  46. Li Y, et al. Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology. 2002;59(4):514–23.

    Article  CAS  PubMed  Google Scholar 

  47. Chen J, et al. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res. 2003;73(6):778–86.

    Article  CAS  PubMed  Google Scholar 

  48. Zacharek A, et al. Angiopoietin1/Tie2 and VEGF/Flk1 induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke. J Cereb Blood Flow Metab. 2007;27(10):1684–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen X, et al. Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts: growth factor production. J Neurosci Res. 2002;69(5):687–91.

    Article  CAS  PubMed  Google Scholar 

  50. Chen X, et al. Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology. 2002;22(4):275–9.

    Article  PubMed  Google Scholar 

  51. Kobayashi T, et al. Intracerebral infusion of glial cell line-derived neurotrophic factor promotes striatal neurogenesis after stroke in adult rats. Stroke. 2006;37(9):2361–7.

    Article  CAS  PubMed  Google Scholar 

  52. Matsuda-Hashii Y, et al. Hepatocyte growth factor plays roles in the induction and autocrine maintenance of bone marrow stromal cell IL-11, SDF-1 alpha, and stem cell factor. Exp Hematol. 2004;32(10):955–61.

    Article  CAS  PubMed  Google Scholar 

  53. Wakabayashi K, et al. Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model. J Neurosci Res. 2010;88(5):1017–25.

    CAS  PubMed  Google Scholar 

  54. Chen TS, et al. Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res. 2010;38(1):215–24.

    Article  CAS  PubMed  Google Scholar 

  55. Lim PK, et al. Neurogenesis: role for microRNAs and mesenchymal stem cells in pathological states. Curr Med Chem. 2010;17(20):2159–67.

    Article  CAS  PubMed  Google Scholar 

  56. Xin H, et al. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells. 2012;30(7):1556–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xin H, et al. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells. 2013;31(12):2737–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic stem cells. Science. 1988;241(4861):58–62.

    Article  CAS  PubMed  Google Scholar 

  59. Holtick U, et al. Comparison of bone marrow versus peripheral blood allogeneic hematopoietic stem cell transplantation for hematological malignancies in adults – a systematic review and meta-analysis. Crit Rev Oncol Hematol. 2015;94(2):179–88.

    Article  PubMed  Google Scholar 

  60. Deotare U, et al. G-CSF-primed bone marrow as a source of stem cells for allografting: revisiting the concept. Bone Marrow Transplant. 2015;50(9):1150–6.

    Article  CAS  PubMed  Google Scholar 

  61. Pineault N, Abu-Khader A. Advances in umbilical cord blood stem cell expansion and clinical translation. Exp Hematol. 2015;43(7):498–513.

    Article  PubMed  Google Scholar 

  62. Bhatia M, et al. A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat Med. 1998;4(9):1038–45.

    Article  CAS  PubMed  Google Scholar 

  63. Guo Y, Lubbert M, Engelhardt M. CD34- hematopoietic stem cells: current concepts and controversies. Stem Cells. 2003;21(1):15–20.

    Article  CAS  PubMed  Google Scholar 

  64. Wognum AW, Eaves AC, Thomas TE. Identification and isolation of hematopoietic stem cells. Arch Med Res. 2003;34(6):461–75.

    Article  CAS  PubMed  Google Scholar 

  65. Calvi LM, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425(6960):841–6.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang J, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 2003;425(6960):836–41.

    Article  CAS  PubMed  Google Scholar 

  67. Kiel MJ, et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005;121(7):1109–21.

    Article  CAS  PubMed  Google Scholar 

  68. Jin DK, et al. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med. 2006;12(5):557–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Abkowitz JL, et al. Mobilization of hematopoietic stem cells during homeostasis and after cytokine exposure. Blood. 2003;102(4):1249–53.

    Article  CAS  PubMed  Google Scholar 

  70. Dar A, et al. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nat Immunol. 2005;6(10):1038–46.

    Article  CAS  PubMed  Google Scholar 

  71. Heissig B, et al. A role for niches in hematopoietic cell development. Hematology. 2005;10(3):247–53.

    Article  CAS  PubMed  Google Scholar 

  72. Yin T, Li L. The stem cell niches in bone. J Clin Invest. 2006;116(5):1195–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kiel MJ, et al. Hematopoietic stem cells do not depend on N-cadherin to regulate their maintenance. Cell Stem Cell. 2009;4(2):170–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kiel MJ, Radice GL, Morrison SJ. Lack of evidence that hematopoietic stem cells depend on N-cadherin-mediated adhesion to osteoblasts for their maintenance. Cell Stem Cell. 2007;1(2):204–17.

    Article  CAS  PubMed  Google Scholar 

  75. Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol. 2006;6(2):93–106.

    Article  CAS  PubMed  Google Scholar 

  76. Nilsson SK, et al. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood. 2005;106(4):1232–9.

    Article  CAS  PubMed  Google Scholar 

  77. Stier S, et al. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med. 2005;201(11):1781–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Arai F, et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell. 2004;118(2):149–61.

    Article  CAS  PubMed  Google Scholar 

  79. Papayannopoulou T, et al. The VLA4/VCAM-1 adhesion pathway defines contrasting mechanisms of lodgement of transplanted murine hemopoietic progenitors between bone marrow and spleen. Proc Natl Acad Sci U S A. 1995;92(21):9647–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Avecilla ST, et al. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med. 2004;10(1):64–71.

    Article  CAS  PubMed  Google Scholar 

  81. Sugiyama T, et al. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006;25(6):977–88.

    Article  CAS  PubMed  Google Scholar 

  82. Fortunel NO, et al. Control of hematopoietic stem/progenitor cell fate by transforming growth factor-beta. Oncol Res. 2003;13(6–10):445–53.

    Article  PubMed  Google Scholar 

  83. Nie Y, Han YC, Zou YR. CXCR4 is required for the quiescence of primitive hematopoietic cells. J Exp Med. 2008;205(4):777–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. van Velthoven CT, et al. Regeneration of the ischemic brain by engineered stem cells: fuelling endogenous repair processes. Brain Res Rev. 2009;61(1):1–13.

    Article  PubMed  CAS  Google Scholar 

  85. Ruscetti FW, Akel S, Bartelmez SH. Autocrine transforming growth factor-beta regulation of hematopoiesis: many outcomes that depend on the context. Oncogene. 2005;24(37):5751–63.

    Article  CAS  PubMed  Google Scholar 

  86. Yamazaki S, et al. TGF-beta as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation. Blood. 2009;113(6):1250–6.

    Article  CAS  PubMed  Google Scholar 

  87. Bernasconi P, et al. Therapeutically targeting self-reinforcing leukemic niches in acute myeloid leukemia (AML): a worthy endeavour? Am J Hematol. 2016.

    Google Scholar 

  88. Cogle CR, et al. Bone marrow niche in the myelodysplastic syndromes. Leuk Res. 2015;39(10):1020–7.

    Article  PubMed  Google Scholar 

  89. Abe-Suzuki S, et al. CXCL12+ stromal cells as bone marrow niche for CD34+ hematopoietic cells and their association with disease progression in myelodysplastic syndromes. Lab Invest. 2014;94(11):1212–23.

    Article  CAS  PubMed  Google Scholar 

  90. Lim M, et al. Altered mesenchymal niche cells impede generation of normal hematopoietic progenitor cells in leukemic bone marrow. Leukemia. 2016;30(1):154–62.

    Article  CAS  PubMed  Google Scholar 

  91. Schepers K, Campbell TB, Passegue E. Normal and leukemic stem cell niches: insights and therapeutic opportunities. Cell Stem Cell. 2015;16(3):254–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Togel FE, Westenfelder C. Role of SDF-1 as a regulatory chemokine in renal regeneration after acute kidney injury. Kidney Int Suppl. 2011;1(3):87–9.

    Article  CAS  Google Scholar 

  93. Cheng M, et al. A critical role of Src family kinase in SDF-1/CXCR4-mediated bone-marrow progenitor cell recruitment to the ischemic heart. J Mol Cell Cardiol. 2015;81:49–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Macarthur Jr JW, et al. Preclinical evaluation of the engineered stem cell chemokine stromal cell-derived factor 1alpha analog in a translational ovine myocardial infarction model. Circ Res. 2014;114(4):650–9.

    Article  CAS  PubMed  Google Scholar 

  95. Wu CH, et al. Stem cell mobilizers targeting chemokine receptor CXCR4: renoprotective application in acute kidney injury. J Med Chem. 2015;58(5):2315–25.

    Article  CAS  PubMed  Google Scholar 

  96. Lapidot T, Dar A, Kollet O. How do stem cells find their way home? Blood. 2005;106(6):1901–10.

    Article  CAS  PubMed  Google Scholar 

  97. Nervi B, Link DC, DiPersio JF. Cytokines and hematopoietic stem cell mobilization. J Cell Biochem. 2006;99(3):690–705.

    Article  CAS  PubMed  Google Scholar 

  98. Papayannopoulou T, Scadden DT. Stem-cell ecology and stem cells in motion. Blood. 2008;111(8):3923–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Christopher MJ, et al. Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization. Blood. 2009;114(7):1331–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wojakowski W, Tendera M. Mobilization of bone marrow-derived progenitor cells in acute coronary syndromes. Folia Histochem Cytobiol. 2005;43(4):229–32.

    PubMed  Google Scholar 

  101. Nagareddy PR, et al. A novel role for bioactive lipids in stem cell mobilization during cardiac ischemia: new paradigms in thrombosis: novel mediators and biomarkers. J Thromb Thrombolysis. 2014;37(1):24–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wojakowski W, et al. Mobilization of stem and progenitor cells in cardiovascular diseases. Leukemia. 2012;26(1):23–33.

    Article  CAS  PubMed  Google Scholar 

  103. Paczkowska E, et al. Human hematopoietic stem/progenitor-enriched CD34(+) cells are mobilized into peripheral blood during stress related to ischemic stroke or acute myocardial infarction. Eur J Haematol. 2005;75(6):461–7.

    Article  CAS  PubMed  Google Scholar 

  104. Hennemann B, et al. Mobilization of CD34+ hematopoietic cells, colony-forming cells and long-term culture-initiating cells into the peripheral blood of patients with an acute cerebral ischemic insult. Cytotherapy. 2008;10(3):303–11.

    Article  CAS  PubMed  Google Scholar 

  105. Courties G, et al. Ischemic stroke activates hematopoietic bone marrow stem cells. Circ Res. 2015;116(3):407–17.

    Article  CAS  PubMed  Google Scholar 

  106. Bonig H, Papayannopoulou T. Hematopoietic stem cell mobilization: updated conceptual renditions. Leukemia. 2013;27(1):24–31.

    Article  CAS  PubMed  Google Scholar 

  107. Levesque JP, et al. Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest. 2003;111(2):187–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Petit I, et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol. 2002;3(7):687–94.

    Article  CAS  PubMed  Google Scholar 

  109. Semerad CL, et al. G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood. 2005;106(9):3020–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lanfranconi S, et al. Growth factors in ischemic stroke. J Cell Mol Med. 2011;15(8):1645–87.

    Article  CAS  PubMed  Google Scholar 

  111. Dar A, Kollet O, Lapidot T. Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice. Exp Hematol. 2006;34(8):967–75.

    Article  CAS  PubMed  Google Scholar 

  112. Dar A, et al. Rapid mobilization of hematopoietic progenitors by AMD3100 and catecholamines is mediated by CXCR4-dependent SDF-1 release from bone marrow stromal cells. Leukemia. 2011;25(8):1286–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ceradini DJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004;10(8):858–64.

    Article  CAS  PubMed  Google Scholar 

  114. Lai TW, et al. HIF-1alpha binding to the Epac1 promoter recruits hematopoietic stem cells to the ischemic brain following stroke. J Mol Cell Biol. 2012;4(3):184–7.

    Article  PubMed  CAS  Google Scholar 

  115. Spiegel A, et al. Stem cell regulation via dynamic interactions of the nervous and immune systems with the microenvironment. Cell Stem Cell. 2008;3(5):484–92.

    Article  CAS  PubMed  Google Scholar 

  116. Winklewski PJ, Radkowski M, Demkow U. Cross-talk between the inflammatory response, sympathetic activation and pulmonary infection in the ischemic stroke. J Neuroinflammation. 2014;11:213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Katayama Y, et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell. 2006;124(2):407–21.

    Article  CAS  PubMed  Google Scholar 

  118. Welte K, et al. Purification and biochemical characterization of human pluripotent hematopoietic colony-stimulating factor. Proc Natl Acad Sci U S A. 1985;82(5):1526–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sprigg N, et al. Granulocyte-colony-stimulating factor mobilizes bone marrow stem cells in patients with subacute ischemic stroke: the Stem cell Trial of recovery EnhanceMent after Stroke (STEMS) pilot randomized, controlled trial (ISRCTN 16784092). Stroke. 2006;37(12):2979–83.

    Article  CAS  PubMed  Google Scholar 

  120. Hochsmann B, et al. Hemispheric stroke does not mobilize cd34+ hematopoietic stem cells into the peripheral blood. Neurology. 2009;72(14):1277–8.

    Article  CAS  PubMed  Google Scholar 

  121. Boy S, et al. Mobilisation of hematopoietic CD34+ precursor cells in patients with acute stroke is safe – results of an open-labeled non randomized phase I/II trial. PLoS One. 2011;6(8):e23099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Papayannopoulou T. Current mechanistic scenarios in hematopoietic stem/progenitor cell mobilization. Blood. 2004;103(5):1580–5.

    Article  CAS  PubMed  Google Scholar 

  123. Levesque JP, et al. Mobilization of bone marrow-derived progenitors. Handb Exp Pharmacol. 2007;(180):3–36.

    Google Scholar 

  124. Larsson J, Scadden D. Nervous activity in a stem cell niche. Cell. 2006;124(2):253–5.

    Article  CAS  PubMed  Google Scholar 

  125. Christopherson 2nd KW, et al. G-CSF- and GM-CSF-induced upregulation of CD26 peptidase downregulates the functional chemotactic response of CD34+CD38- human cord blood hematopoietic cells. Exp Hematol. 2006;34(8):1060–8.

    Article  CAS  PubMed  Google Scholar 

  126. Campbell TB, et al. Inhibition of CD26 in human cord blood CD34+ cells enhances their engraftment of nonobese diabetic/severe combined immunodeficiency mice. Stem Cells Dev. 2007;16(3):347–54.

    Article  CAS  PubMed  Google Scholar 

  127. Christopherson 2nd KW, et al. Modulation of hematopoietic stem cell homing and engraftment by CD26. Science. 2004;305(5686):1000–3.

    Article  CAS  PubMed  Google Scholar 

  128. Rankin SM. Chemokines and adult bone marrow stem cells. Immunol Lett. 2012;145(1–2):47–54.

    Article  CAS  PubMed  Google Scholar 

  129. Lapidot T, Kollet O. The brain-bone-blood triad: traffic lights for stem-cell homing and mobilization. Hematology Am Soc Hematol Educ Program. 2010;2010:1–6.

    PubMed  Google Scholar 

  130. Spiegel A, et al. Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nat Immunol. 2007;8(10):1123–31.

    Article  CAS  PubMed  Google Scholar 

  131. England TJ, et al. Granulocyte-colony stimulating factor for mobilizing bone marrow stem cells in subacute stroke: the stem cell trial of recovery enhancement after stroke 2 randomized controlled trial. Stroke. 2012;43(2):405–11.

    Article  CAS  PubMed  Google Scholar 

  132. Nomani F, Kamal AK. Granulocyte-colony stimulating factor for mobilizing bone marrow stem cells in the sub acute stroke. How safe is the use of granulocyte-colony stimulating factor in sub-acute stroke? Is this stem cell trial of recovery enhancement beneficial? J Pak Med Assoc. 2013;63(12):1558–9.

    PubMed  PubMed Central  Google Scholar 

  133. Alvarez P, et al. Regulatory systems in bone marrow for hematopoietic stem/progenitor cells mobilization and homing. Biomed Res Int. 2013;2013:312656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhao LR, et al. The role of stem cell factor and granulocyte-colony stimulating factor in treatment of stroke. Recent Pat CNS Drug Discov. 2013;8(1):2–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Duarte RF, Franf DA. The synergy between stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF): molecular basis and clinical relevance. Leuk Lymphoma. 2002;43(6):1179–87.

    Article  CAS  PubMed  Google Scholar 

  136. Matthys P, et al. AMD3100, a potent and specific antagonist of the stromal cell-derived factor-1 chemokine receptor CXCR4, inhibits autoimmune joint inflammation in IFN-gamma receptor-deficient mice. J Immunol. 2001;167(8):4686–92.

    Article  CAS  PubMed  Google Scholar 

  137. Lee HM, et al. Mobilization studies in complement-deficient mice reveal that optimal AMD3100 mobilization of hematopoietic stem cells depends on complement cascade activation by AMD3100-stimulated granulocytes. Leukemia. 2010;24(3):573–82.

    Article  CAS  PubMed  Google Scholar 

  138. Fukuda S, et al. The chemokine GRObeta mobilizes early hematopoietic stem cells characterized by enhanced homing and engraftment. Blood. 2007;110(3):860–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Pelus LM, Fukuda S. Peripheral blood stem cell mobilization: the CXCR2 ligand GRObeta rapidly mobilizes hematopoietic stem cells with enhanced engraftment properties. Exp Hematol. 2006;34(8):1010–20.

    Article  CAS  PubMed  Google Scholar 

  140. Bodart V, et al. Pharmacology of AMD3465: a small molecule antagonist of the chemokine receptor CXCR4. Biochem Pharmacol. 2009;78(8):993–1000.

    Article  CAS  PubMed  Google Scholar 

  141. Abraham M, et al. Enhanced unique pattern of hematopoietic cell mobilization induced by the CXCR4 antagonist 4F-benzoyl-TN14003. Stem Cells. 2007;25(9):2158–66.

    Article  CAS  PubMed  Google Scholar 

  142. DeMarco SJ, et al. Discovery of novel, highly potent and selective beta-hairpin mimetic CXCR4 inhibitors with excellent anti-HIV activity and pharmacokinetic profiles. Bioorg Med Chem. 2006;14(24):8396–404.

    Article  CAS  PubMed  Google Scholar 

  143. Ramirez P, et al. BIO5192, a small molecule inhibitor of VLA-4, mobilizes hematopoietic stem and progenitor cells. Blood. 2009;114(7):1340–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Borlongan CV, et al. The great migration of bone marrow-derived stem cells toward the ischemic brain: therapeutic implications for stroke and other neurological disorders. Prog Neurobiol. 2011;95(2):213–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bleul CC, et al. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature. 1996;382(6594):829–33.

    Article  CAS  PubMed  Google Scholar 

  146. Oh IY, et al. Involvement of E-selectin in recruitment of endothelial progenitor cells and angiogenesis in ischemic muscle. Blood. 2007;110(12):3891–9.

    Article  CAS  PubMed  Google Scholar 

  147. Tauxe C, et al. P-selectin glycoprotein ligand-1 decameric repeats regulate selectin-dependent rolling under flow conditions. J Biol Chem. 2008;283(42):28536–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Turner ML, et al. Differential expression of cell adhesion molecules by human hematopoietic progenitor cells from bone marrow and mobilized adult peripheral blood. Stem Cells. 1995;13(3):311–6.

    Article  CAS  PubMed  Google Scholar 

  149. Peled A, et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood. 2000;95(11):3289–96.

    CAS  PubMed  Google Scholar 

  150. Heo JH, et al. Increase in plasma matrix metalloproteinase-9 in acute stroke patients with thrombolysis failure. Stroke. 2003;34(6):e48–50.

    Article  CAS  PubMed  Google Scholar 

  151. Castellanos M, et al. Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke. Stroke. 2003;34(1):40–6.

    Article  CAS  PubMed  Google Scholar 

  152. Horstmann S, et al. Profiles of matrix metalloproteinases, their inhibitors, and laminin in stroke patients: influence of different therapies. Stroke. 2003;34(9):2165–70.

    Article  PubMed  Google Scholar 

  153. Montaner J, et al. Safety profile of tissue plasminogen activator treatment among stroke patients carrying a common polymorphism (C-1562T) in the promoter region of the matrix metalloproteinase-9 gene. Stroke. 2003;34(12):2851–5.

    Article  CAS  PubMed  Google Scholar 

  154. McQuibban GA, et al. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem. 2001;276(47):43503–8.

    Article  CAS  PubMed  Google Scholar 

  155. Shyu WC, et al. Stromal cell-derived factor-1 alpha promotes neuroprotection, angiogenesis, and mobilization/homing of bone marrow-derived cells in stroke rats. J Pharmacol Exp Ther. 2008;324(2):834–49.

    Article  CAS  PubMed  Google Scholar 

  156. Segers VF, et al. Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. Circulation. 2007;116(15):1683–92.

    Article  CAS  PubMed  Google Scholar 

  157. Shyu WC, et al. Intracerebral peripheral blood stem cell (CD34+) implantation induces neuroplasticity by enhancing beta1 integrin-mediated angiogenesis in chronic stroke rats. J Neurosci. 2006;26(13):3444–53.

    Article  CAS  PubMed  Google Scholar 

  158. Blazar BR, Murphy WJ, Abedi M. Advances in graft-versus-host disease biology and therapy. Nat Rev Immunol. 2012;12(6):443–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ferrara JL, et al. Graft-versus-host disease. Lancet. 2009;373(9674):1550–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Hsiao HH, et al. Acute cerebral infarct with elevated factor VIII level during the thrombocytopenic stage after hematopoietic stem cell transplant. Exp Clin Transplant. 2014;12(2):171–2.

    PubMed  Google Scholar 

  161. Moshayedi P, Carmichael ST. Hyaluronan, neural stem cells and tissue reconstruction after acute ischemic stroke. Biomatter. 2013;3(1).

    Google Scholar 

  162. Macrez R, et al. Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet Neurol. 2011;10(5):471–80.

    Article  CAS  PubMed  Google Scholar 

  163. Shyu WC, et al. Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation. 2004;110(13):1847–54.

    Article  CAS  PubMed  Google Scholar 

  164. Schwarting S, et al. Hematopoietic stem cells reduce postischemic inflammation and ameliorate ischemic brain injury. Stroke. 2008;39(10):2867–75.

    Article  CAS  PubMed  Google Scholar 

  165. Fisher M. New approaches to neuroprotective drug development. Stroke. 2011;42(1 Suppl):S24–7.

    Article  PubMed  Google Scholar 

  166. Kim S, et al. Angiotensin II regulation of proliferation, differentiation, and engraftment of hematopoietic stem cells. Hypertension. 2016;67:574.

    CAS  PubMed  Google Scholar 

  167. Lui WC, et al. Cytokine combinations on the potential for ex vivo expansion of murine hematopoietic stem cells. Cytokine. 2014;68(2):127–32.

    Article  CAS  PubMed  Google Scholar 

  168. Bendall LJ, Bradstock KF. G-CSF: from granulopoietic stimulant to bone marrow stem cell mobilizing agent. Cytokine Growth Factor Rev. 2014;25(4):355–67.

    Article  CAS  PubMed  Google Scholar 

  169. Metcalf D. The granulocyte-macrophage colony stimulating factors. Cell. 1985;43(1):5–6.

    Article  CAS  PubMed  Google Scholar 

  170. Bijou F, et al. Hematopoietic stem cells mobilization: state of the art in 2011 and perspectives. Transfus Clin Biol. 2011;18(5–6):503–15.

    Article  CAS  PubMed  Google Scholar 

  171. Metcalf D. The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells. Nature. 1989;339(6219):27–30.

    Article  CAS  PubMed  Google Scholar 

  172. Fukuda S, et al. Survivin modulates genes with divergent molecular functions and regulates proliferation of hematopoietic stem cells through Evi-1. Leukemia. 2015;29(2):433–40.

    Article  CAS  PubMed  Google Scholar 

  173. Majka M, et al. Numerous growth factors, cytokines, and chemokines are secreted by human CD34(+) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood. 2001;97(10):3075–85.

    Article  CAS  PubMed  Google Scholar 

  174. Chmielnicki E, et al. Adenovirally expressed noggin and brain-derived neurotrophic factor cooperate to induce new medium spiny neurons from resident progenitor cells in the adult striatal ventricular zone. J Neurosci. 2004;24(9):2133–42.

    Article  CAS  PubMed  Google Scholar 

  175. Gustafsson E, et al. Anterograde delivery of brain-derived neurotrophic factor to striatum via nigral transduction of recombinant adeno-associated virus increases neuronal death but promotes neurogenic response following stroke. Eur J Neurosci. 2003;17(12):2667–78.

    Article  PubMed  Google Scholar 

  176. Schanzer A, et al. Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor. Brain Pathol. 2004;14(3):237–48.

    Article  PubMed  Google Scholar 

  177. Kuhn HG, et al. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci. 1997;17(15):5820–9.

    CAS  PubMed  Google Scholar 

  178. Jin K, et al. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci U S A. 2002;99(18):11946–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Sun J, et al. Clostridium butyricum pretreatment attenuates cerebral ischemia/reperfusion injury in mice via anti-oxidation and anti-apoptosis. Neurosci Lett. 2016;613:30–5.

    Article  CAS  PubMed  Google Scholar 

  180. Gu Y, Chen J, Shen J. Herbal medicines for ischemic stroke: combating inflammation as therapeutic targets. J Neuroimmune Pharmacol. 2014;9(3):313–39.

    Article  PubMed  Google Scholar 

  181. Tobin MK, et al. Neurogenesis and inflammation after ischemic stroke: what is known and where we go from here. J Cereb Blood Flow Metab. 2014;34(10):1573–84.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Bu Q, et al. w007B protects brain against ischemia-reperfusion injury in rats through inhibiting inflammation, apoptosis and autophagy. Brain Res. 2014;1558:100–8.

    Article  CAS  PubMed  Google Scholar 

  183. Taguchi A, et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest. 2004;114(3):330–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Tsuji M, et al. Effects of intravenous administration of umbilical cord blood CD34(+) cells in a mouse model of neonatal stroke. Neuroscience. 2014;263:148–58.

    Article  CAS  PubMed  Google Scholar 

  185. Reali C, et al. Differentiation of human adult CD34+ stem cells into cells with a neural phenotype: role of astrocytes. Exp Neurol. 2006;197(2):399–406.

    Article  CAS  PubMed  Google Scholar 

  186. Hao HN, et al. Fetal human hematopoietic stem cells can differentiate sequentially into neural stem cells and then astrocytes in vitro. J Hematother Stem Cell Res. 2003;12(1):23–32.

    Article  CAS  PubMed  Google Scholar 

  187. Lu CZ, Xiao BG. Neuroprotection of G-CSF in cerebral ischemia. Front Biosci. 2007;12:2869–75.

    Article  CAS  PubMed  Google Scholar 

  188. Asahara T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–7.

    Article  CAS  PubMed  Google Scholar 

  189. Quirici N, et al. Differentiation and expansion of endothelial cells from human bone marrow CD133(+) cells. Br J Haematol. 2001;115(1):186–94.

    Article  CAS  PubMed  Google Scholar 

  190. Gehling UM, et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood. 2000;95(10):3106–12.

    CAS  PubMed  Google Scholar 

  191. Miraglia S, et al. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood. 1997;90(12):5013–21.

    CAS  PubMed  Google Scholar 

  192. Fadini GP, Losordo D, Dimmeler S. Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ Res. 2012;110(4):624–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Hill JM, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003;348(7):593–600.

    Article  PubMed  Google Scholar 

  194. Hur J, et al. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol. 2004;24(2):288–93.

    Article  CAS  PubMed  Google Scholar 

  195. Medina RJ, et al. Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities. BMC Med Genomics. 2010;3:18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Urbich C, et al. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J Mol Cell Cardiol. 2005;39(5):733–42.

    Article  CAS  PubMed  Google Scholar 

  197. Rehman J, et al. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation. 2003;107(8):1164–9.

    Article  PubMed  Google Scholar 

  198. Yoder MC, et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood. 2007;109(5):1801–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005;438(7070):932–6.

    Article  CAS  PubMed  Google Scholar 

  200. Shi Q, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood. 1998;92(2):362–7.

    CAS  PubMed  Google Scholar 

  201. Moubarik C, et al. Transplanted late outgrowth endothelial progenitor cells as cell therapy product for stroke. Stem Cell Rev. 2011;7(1):208–20.

    Article  PubMed  Google Scholar 

  202. Zhang ZG, et al. Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ Res. 2002;90(3):284–8.

    Article  CAS  PubMed  Google Scholar 

  203. Ohta T, et al. Administration of ex vivo-expanded bone marrow-derived endothelial progenitor cells attenuates focal cerebral ischemia-reperfusion injury in rats. Neurosurgery. 2006;59(3):679–86. discussion 679–86.

    Article  PubMed  Google Scholar 

  204. Bogoslovsky T, et al. Endothelial progenitor cells correlate with lesion volume and growth in acute stroke. Neurology. 2010;75(23):2059–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Sobrino T, et al. The increase of circulating endothelial progenitor cells after acute ischemic stroke is associated with good outcome. Stroke. 2007;38(10):2759–64.

    Article  PubMed  Google Scholar 

  206. Marti-Fabregas J, et al. Endothelial progenitor cells in acute ischemic stroke. Brain Behav. 2013;3(6):649–55.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Wu Q, et al. Extracellular calcium increases CXCR4 expression on bone marrow-derived cells and enhances pro-angiogenesis therapy. J Cell Mol Med. 2009;13(9B):3764–73.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Fan Y, et al. Endothelial progenitor cell transplantation improves long-term stroke outcome in mice. Ann Neurol. 2010;67(4):488–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Powell TM, et al. Granulocyte colony-stimulating factor mobilizes functional endothelial progenitor cells in patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 2005;25(2):296–301.

    Article  CAS  PubMed  Google Scholar 

  210. Levesque JP, et al. Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood. 2001;98(5):1289–97.

    Article  CAS  PubMed  Google Scholar 

  211. Jeong JA, et al. Rapid neural differentiation of human cord blood-derived mesenchymal stem cells. Neuroreport. 2004;15(11):1731–4.

    Article  CAS  PubMed  Google Scholar 

  212. Krabbe C, Zimmer J, Meyer M. Neural transdifferentiation of mesenchymal stem cells--a critical review. APMIS. 2005;113(11–12):831–44.

    Article  PubMed  Google Scholar 

  213. Lu P, Blesch A, Tuszynski MH. Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact? J Neurosci Res. 2004;77(2):174–91.

    Article  CAS  PubMed  Google Scholar 

  214. Sun Y, et al. Vascular endothelial growth factor-B (VEGFB) stimulates neurogenesis: evidence from knockout mice and growth factor administration. Dev Biol. 2006;289(2):329–35.

    Article  CAS  PubMed  Google Scholar 

  215. Borlongan CV. Bone marrow stem cell mobilization in stroke: a ‘bonehead’ may be good after all! Leukemia. 2011;25(11):1674–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qichuan Zhuge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Wang, W., Chen, L., Ruan, L., Jin, K., Zhuge, Q. (2017). Mobilization and Homing of Bone Marrow Stem Cells After Stroke. In: Jin, K., Ji, X., Zhuge, Q. (eds) Bone marrow stem cell therapy for stroke. Springer, Singapore. https://doi.org/10.1007/978-981-10-2929-5_3

Download citation

Publish with us

Policies and ethics