Skip to main content

Imaging and Tracking Transplanted Bone Marrow Stem Cells After Stroke

  • Chapter
  • First Online:
  • 644 Accesses

Abstract

Stem cells provide a promising therapy for treating stroke. Several imaging techniques provide the possibility of the visual representation of biological processes of transplanted stem cells in vivo. Further means of monitoring the transplanted cells safely, noninvasively, and longitudinally would contribute to the understanding of the underlying stem cell therapeutic mechanism. In this chapter, we describe the state-of-the-art methods of monitoring transplanted stem cells in vivo, including magnetic resonance imaging (MRI), radionuclide imaging, and optical imaging. Their principles vary and each has advantages and drawbacks. Presently, no single technique is excellent through ideal criteria; the combination of multiple imaging modalities is thus an attractive strategy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Azevedo-Pereira RL, Daadi MM. Isolation and purification of self-renewable human neural stem cells for cell therapy in experimental model of ischemic stroke. Methods Mol Biol. 2013;1059:157–67.

    Article  CAS  PubMed  Google Scholar 

  2. Roh JK, Jung KH, Chu K. Adult stem cell transplantation in stroke: its limitations and prospects. Curr Stem Cell Res Ther. 2008;3:185–96.

    Article  CAS  PubMed  Google Scholar 

  3. Bang OY. Clinical trials of adult stem cell therapy in patients with ischemic stroke. J Clin Neurol. 2016;12:14–20.

    Article  PubMed  Google Scholar 

  4. Kim DE, Schellingerhout D, Ishii K, Shah K, Weissleder R. Imaging of stem cell recruitment to ischemic infarcts in a murine model. Stroke J Cereb Circ. 2004;35:952–7.

    Article  Google Scholar 

  5. Wang Y, Xu F, Zhang C, Lei D, Tang Y, Xu H, et al. High MR sensitive fluorescent magnetite nanocluster for stem cell tracking in ischemic mouse brain. Nanomed: Nanotechnol Biol Med. 2011;7:1009–19.

    CAS  Google Scholar 

  6. Bulte JW, Duncan ID, Frank JA. In vivo magnetic resonance tracking of magnetically labeled cells after transplantation. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2002;22:899–907.

    Article  Google Scholar 

  7. Sykova E, Jendelova P. In vivo tracking of stem cells in brain and spinal cord injury. Prog Brain Res. 2007;161:367–83.

    Article  CAS  PubMed  Google Scholar 

  8. Hicks A, Jolkkonen J. Challenges and possibilities of intravascular cell therapy in stroke. Acta Neurobiol Exp. 2009;69:1–11.

    Google Scholar 

  9. Bliss TM, Andres RH, Steinberg GK. Optimizing the success of cell transplantation therapy for stroke. Neurobiol Dis. 2010;37:275–83.

    Article  PubMed  Google Scholar 

  10. Walker PA, Harting MT, Shah SK, Day MC, El Khoury R, Savitz SI, et al. Progenitor cell therapy for the treatment of central nervous system injury: a review of the state of current clinical trials. Stem Cells Int. 2010;2010:369578.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Arbab AS, Frank JA. Cellular MRI and its role in stem cell therapy. Regen Med. 2008;3:199–215.

    Article  CAS  PubMed  Google Scholar 

  12. Sabapathy V, Mentam J, Jacob PM, Kumar S. Noninvasive optical imaging and in vivo cell tracking of indocyanine green labeled human stem cells transplanted at superficial or in-depth tissue of SCID mice. Stem Cells Int. 2015;2015:606415.

    PubMed  PubMed Central  Google Scholar 

  13. Tennstaedt A, Mastropietro A, Nelles M, Beyrau A, Hoehn M. In vivo fate imaging of intracerebral stem cell grafts in mouse brain. PLoS One. 2015;10:e0144262.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhou B, Li D, Qian J, Li Z, Pang P, Shan H. MR tracking of SPIO-labeled mesenchymal stem cells in rats with liver fibrosis could not monitor the cells accurately. Contrast Media Mol Imaging. 2015;10:473–80.

    Article  CAS  PubMed  Google Scholar 

  15. Han H, Shi C, Fu Y, Zuo L, Lee K, He Q, et al. A novel MRI tracer-based method for measuring water diffusion in the extracellular space of the rat brain. IEEE J Biomed Health Inform. 2014;18:978–83.

    Article  PubMed  Google Scholar 

  16. Lei Y, Han H, Yuan F, Javeed A, Zhao Y. The brain interstitial system: anatomy, modeling, in vivo measurement, and applications. Prog Neurobiol. 2016. doi:10.1016/j.pneurobio.2015.12.007.

    PubMed  Google Scholar 

  17. Chao F, Shen Y, Zhang H, Tian M. Multimodality molecular imaging of stem cells therapy for stroke. Biomed Res Int. 2013;2013:849819.

    PubMed  PubMed Central  Google Scholar 

  18. Srivastava AK, Kadayakkara DK, Bar-Shir A, Gilad AA, McMahon MT, Bulte JW. Advances in using MRI probes and sensors for in vivo cell tracking as applied to regenerative medicine. Dis Model Mech. 2015;8:323–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Norman AB, Thomas SR, Pratt RG, Lu SY, Norgren RB. Magnetic resonance imaging of neural transplants in rat brain using a superparamagnetic contrast agent. Brain Res. 1992;594:279–83.

    Article  CAS  PubMed  Google Scholar 

  20. Andrzejewska A, Nowakowski A, Janowski M, Bulte JW, Gilad AA, Walczak P, et al. Pre- and postmortem imaging of transplanted cells. Int J Nanomedicine. 2015;10:5543–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sieber MA, Pietsch H, Walter J, Haider W, Frenzel T, Weinmann HJ. A preclinical study to investigate the development of nephrogenic systemic fibrosis: a possible role for gadolinium-based contrast media. Invest Radiol. 2008;43:65–75.

    Article  PubMed  Google Scholar 

  22. Modo M, Beech JS, Meade TJ, Williams SC, Price J. A chronic 1 year assessment of MRI contrast agent-labelled neural stem cell transplants in stroke. Neuroimage. 2009;47 Suppl 2:T133–42.

    Article  PubMed  Google Scholar 

  23. Ishibashi H, Hirao K, Yamaguchi J, Nabekura J. Inhibition of chloride outward transport by gadolinium in cultured rat spinal cord neurons. Neurotoxicology. 2009;30:155–9.

    Article  CAS  PubMed  Google Scholar 

  24. Shi C, Lei Y, Han H, Zuo L, Yan J, He Q, et al. Transportation in the interstitial space of the brain can be regulated by neuronal excitation. Sci Rep. 2015;5:17673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee N, Kim H, Choi SH, Park M, Kim D, Kim HC, et al. Magnetosome-like ferrimagnetic iron oxide nanocubes for highly sensitive MRI of single cells and transplanted pancreatic islets. Proc Natl Acad Sci U S A. 2011;108:2662–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gavins FN, Smith HK. Cell tracking technologies for acute ischemic brain injury. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2015;35:1090–9.

    Article  CAS  Google Scholar 

  27. Cores J, Caranasos TG, Cheng K. Magnetically targeted stem cell delivery for regenerative medicine. J Funct Biomaterials. 2015;6:526–46.

    Article  CAS  Google Scholar 

  28. Korchinski DJ, Taha M, Yang R, Nathoo N, Dunn JF. Iron oxide as an MRI contrast agent for cell tracking. Magn Reson Insights. 2015;8:15–29.

    PubMed  PubMed Central  Google Scholar 

  29. Wang Y, Xu C, Ow H. Commercial nanoparticles for stem cell labeling and tracking. Theranostics. 2013;3:544–60.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Heryanto YD, Achmad A, Taketomi-Takahashi A, Tsushima Y. In vivo molecular imaging of cancer stem cells. Am J Nucl Med Mol Imaging. 2015;5:14–26.

    CAS  PubMed  Google Scholar 

  31. Shapiro EM. Biodegradable, polymer encapsulated, metal oxide particles for MRI-based cell tracking. Magn Reson Med. 2015;73:376–89.

    Article  CAS  PubMed  Google Scholar 

  32. Mathiasen AB, Kastrup J. Non-invasive in-vivo imaging of stem cells after transplantation in cardiovascular tissue. Theranostics. 2013;3:561–72.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Genove G, DeMarco U, Xu H, Goins WF, Ahrens ET. A new transgene reporter for in vivo magnetic resonance imaging. Nat Med. 2005;11:450–4.

    Article  CAS  PubMed  Google Scholar 

  34. Aghayan HR, Soleimani M, Goodarzi P, Norouzi-Javidan A, Emami-Razavi SH, Larijani B, et al. Magnetic resonance imaging of transplanted stem cell fate in stroke. J Res Med Sci: Off J Isfahan Univ Med Sci. 2014;19:465–71.

    Google Scholar 

  35. Savitz SI, Cramer SC, Wechsler L, Consortium S. Stem cells as an emerging paradigm in stroke 3: enhancing the development of clinical trials. Stroke J Cereb Circ. 2014;45:634–9.

    Article  Google Scholar 

  36. Dousset V, Brochet B, Deloire MS, Lagoarde L, Barroso B, Caille JM, et al. MR imaging of relapsing multiple sclerosis patients using ultra-small-particle iron oxide and compared with gadolinium. AJNR Am J Neuroradiol. 2006;27:1000–5.

    CAS  PubMed  Google Scholar 

  37. Bulte JW. Intracellular endosomal magnetic labeling of cells. Methods Mol Med. 2006;124:419–39.

    PubMed  Google Scholar 

  38. Zhao W, Schafer S, Choi J, Yamanaka YJ, Lombardi ML, Bose S, et al. Cell-surface sensors for real-time probing of cellular environments. Nat Nanotechnol. 2011;6:524–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rosado-de-Castro PH, Pimentel-Coelho PM, Gutfilen B, Lopes de Souza SA, de Freitas GR, Mendez-Otero R, et al. Radiopharmaceutical stem cell tracking for neurological diseases. Biomed Res Int. 2014;2014:417091.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Roca M, Martin-Comin J, Becker W, Bernardo-Filho M, Gutfilen B, Moisan A, et al. A consensus protocol for white blood cells labelling with technetium-99m hexamethylpropylene amine oxime. International Society of Radiolabeled Blood Elements (ISORBE). Eur J Nucl Med. 1998;25:797–9.

    Article  CAS  PubMed  Google Scholar 

  41. Acton PD, Zhou R. Imaging reporter genes for cell tracking with PET and SPECT. Q J Nucl Med Mol Imaging: Off Publ Ital Assoc Nucl Med. 2005;49:349–60.

    CAS  Google Scholar 

  42. Iyer M, Berenji M, Templeton NS, Gambhir SS. Noninvasive imaging of cationic lipid-mediated delivery of optical and PET reporter genes in living mice. Mol Ther: J Am Soc Gene Ther. 2002;6:555–62.

    Article  CAS  Google Scholar 

  43. Moreira ML, da Costa MP, de Souza SA, Gutfilen B, Rosado-de-Castro PH. In vivo tracking of cell therapies for cardiac diseases with nuclear medicine. Stem Cells Int. 2016;2016:3140120.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wu T, Lang J, Sun X, Zhang B, Liu Y, An R. Monitoring bone marrow stem cells with a reporter gene system in experimental middle cerebral artery occlusion rat models. J Nucl Med: Off Publ Soc Nucl Med. 2013;54:984–9.

    Article  CAS  Google Scholar 

  45. Correa PL, Mesquita CT, Felix RM, Azevedo JC, Barbirato GB, Falcao CH, et al. Assessment of intra-arterial injected autologous bone marrow mononuclear cell distribution by radioactive labeling in acute ischemic stroke. Clin Nucl Med. 2007;32:839–41.

    Article  PubMed  Google Scholar 

  46. Miyamoto M, Kuroda S, Zhao S, Magota K, Shichinohe H, Houkin K, et al. Bone marrow stromal cell transplantation enhances recovery of local glucose metabolism after cerebral infarction in rats: a serial 18F-FDG PET study. J Nucl Med: Off Publ Soc Nucl Med. 2013;54:145–50.

    Article  CAS  Google Scholar 

  47. Daadi MM, Hu S, Klausner J, Li Z, Sofilos M, Sun G, et al. Imaging neural stem cell graft-induced structural repair in stroke. Cell Transplant. 2013;22:881–92.

    Article  PubMed  Google Scholar 

  48. Cicchetti F, Gross RE, Bulte JW, Owen M, Chen I, Saint-Pierre M, et al. Dual-modality in vivo monitoring of subventricular zone stem cell migration and metabolism. Contrast Media Mol Imaging. 2007;2:130–8.

    Article  CAS  PubMed  Google Scholar 

  49. Tang Y, Zhang C, Wang J, Lin X, Zhang L, Yang Y, et al. MRI/SPECT/fluorescent tri-modal probe for evaluating the homing and therapeutic efficacy of transplanted mesenchymal stem cells in a rat ischemic stroke model. Adv Funct Mater. 2015;25:1024–34.

    Article  CAS  PubMed  Google Scholar 

  50. Osanai T, Kuroda S, Sugiyama T, Kawabori M, Ito M, Shichinohe H, et al. Therapeutic effects of intra-arterial delivery of bone marrow stromal cells in traumatic brain injury of rats – in vivo cell tracking study by near-infrared fluorescence imaging. Neurosurgery. 2012;70:435–44. discussion 444.

    Article  PubMed  Google Scholar 

  51. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249:505–10.

    Article  CAS  PubMed  Google Scholar 

  52. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346:818–22.

    Article  CAS  PubMed  Google Scholar 

  53. Iwagawa T, Ohuchi SP, Watanabe S, Nakamura Y. Selection of RNA aptamers against mouse embryonic stem cells. Biochimie. 2012;94:250–7.

    Article  CAS  PubMed  Google Scholar 

  54. Wiraja C, Yeo D, Lio D, Labanieh L, Lu M, Zhao W, et al. Aptamer technology for tracking cells’ status & function. Mol Cell Ther. 2014;2:33.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Shen HF, Yao ZF, Xiao GF, Jia JS, Xiao D, Yao KT. Induced Pluripotent Stem cells (iPS Cells): current status and future prospect. Prog Biochem Biophys. 2009;36:950–60.

    Article  Google Scholar 

  56. Massoud TF, Singh A, Gambhir SS. Noninvasive molecular neuroimaging using reporter genes: part I, principles revisited. AJNR Am J Neuroradiol. 2008;29:229–34.

    Article  CAS  PubMed  Google Scholar 

  57. Shichinohe H, Kuroda S, Lee JB, Nishimura G, Yano S, Seki T, et al. In vivo tracking of bone marrow stromal cells transplanted into mice cerebral infarct by fluorescence optical imaging. Brain Res Brain Res Protoc. 2004;13:166–75.

    Article  PubMed  Google Scholar 

  58. Yang M, Baranov E, Jiang P, Sun FX, Li XM, Li L, et al. Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc Natl Acad Sci U S A. 2000;97:1206–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sugiyama T, Kuroda S, Osanai T, Shichinohe H, Kuge Y, Ito M, et al. Near-infrared fluorescence labeling allows noninvasive tracking of bone marrow stromal cells transplanted into rat infarct brain. Neurosurgery. 2011;68:1036–47. discussion 1047.

    Article  PubMed  Google Scholar 

  60. Kawabori M, Kuroda S, Sugiyama T, Ito M, Shichinohe H, Houkin K, et al. Intracerebral, but not intravenous, transplantation of bone marrow stromal cells enhances functional recovery in rat cerebral infarct: an optical imaging study. Neuropathol: Off J Jpn Soc Neuropathol. 2012;32:217–26.

    Article  Google Scholar 

  61. Famulok M, Hartig JS, Mayer G. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev. 2007;107:3715–43.

    Article  CAS  PubMed  Google Scholar 

  62. Bulte JW. In vivo MRI cell tracking: clinical studies. AJR Am J Roentgenol. 2009;193:314–25.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sutton EJ, Henning TD, Pichler BJ, Bremer C, Daldrup-Link HE. Cell tracking with optical imaging. Eur Radiol. 2008;18:2021–32.

    Article  PubMed  Google Scholar 

  64. Aswendt M, Adamczak J, Tennstaedt A. A review of novel optical imaging strategies of the stroke pathology and stem cell therapy in stroke. Front Cell Neurosci. 2014;8:226.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbin Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Han, H. et al. (2017). Imaging and Tracking Transplanted Bone Marrow Stem Cells After Stroke. In: Jin, K., Ji, X., Zhuge, Q. (eds) Bone marrow stem cell therapy for stroke. Springer, Singapore. https://doi.org/10.1007/978-981-10-2929-5_14

Download citation

Publish with us

Policies and ethics