Skip to main content

Ischemic Stroke Pathophysiology and Cell Therapy

  • Chapter
  • First Online:
Bone marrow stem cell therapy for stroke

Abstract

Current evidence shows great promise for stem cell transplantation as a new therapeutic strategy for stroke. However, stem cell transplantation for stroke is still in its infancy, with many issues that need to be addressed in order to achieve the full potential of stem cell therapy for stroke. Among the major hurdles for successful clinical translation is determining the therapeutic time window, stem cell type selection, delivery route, and underlying cellular and molecular mechanisms. In this chapter, we attempt to review the basic knowledge of pathophysiology and summarize the different stem cells for stroke treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe K, Yamashita T, Takizawa S, Kuroda S, Kinouchi H, Kawahara N. Stem cell therapy for cerebral ischemia: from basic science to clinical applications. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2012;32(7):1317–31. doi:10.1038/jcbfm.2011.187.

    Article  CAS  Google Scholar 

  2. Abramova N, Charniga C, Goderie SK, Temple S. Stage-specific changes in gene expression in acutely isolated mouse CNS progenitor cells. Dev Biol. 2005;283(2):269–81.

    Article  CAS  PubMed  Google Scholar 

  3. Alenzi F, Bahkali A. Stem cells: biology and clinical potential. Afr J Biotechnol. 2011;10(86):19929–40.

    CAS  Google Scholar 

  4. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, et al. Mechanism of activation of protein kinase B by insulin and IGF-1. Embo J. 1996;15(23):6541–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Alvarez-Buylla A, Garcia-Verdugo JM. Neurogenesis in adult subventricular zone. J Neurosci. 2002;22(3):629–34.

    CAS  PubMed  Google Scholar 

  6. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002;8(9):963–70.

    Article  CAS  PubMed  Google Scholar 

  7. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science (New York, NY). 1997;275(5302):964–7.

    Article  CAS  Google Scholar 

  8. Bain G, Kitchens D, Yao M, Huettner JE, Gottlieb DI. Embryonic stem cells express neuronal properties in vitro. Dev Biol. 1995;168(2):342–57. doi:10.1006/dbio.1995.1085. S0012-1606(85)71085-8 [pii].

    Article  CAS  PubMed  Google Scholar 

  9. Bang OY, Lee JS, Lee PH, Lee G. Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol. 2005;57(6):874–82. doi:10.1002/ana.20501.

    Article  PubMed  Google Scholar 

  10. Bernardi P, Petronilli V, Di Lisa F, Forte M. A mitochondrial perspective on cell death. Trends Biochem Sci. 2001;26(2):112–7.

    Article  CAS  PubMed  Google Scholar 

  11. Bjorklund A, Lindvall O. Cell replacement therapies for central nervous system disorders. Nat Neurosci. 2000;3(6):537–44.

    Article  CAS  PubMed  Google Scholar 

  12. Borlongan CV, Tajima Y, Trojanowski JQ, Lee VM, Sanberg PR. Cerebral ischemia and CNS transplantation: differential effects of grafted fetal rat striatal cells and human neurons derived from a clonal cell line. Neuroreport. 1998;9(16):3703–9.

    Article  CAS  PubMed  Google Scholar 

  13. Borlongan CV, Tajima Y, Trojanowski JQ, Lee VM, Sanberg PR. Transplantation of cryopreserved human embryonal carcinoma-derived neurons (NT2N cells) promotes functional recovery in ischemic rats. Exp Neurol. 1998;149(2):310–21.

    Article  CAS  PubMed  Google Scholar 

  14. Brederlau A, Correia AS, Anisimov SV, Elmi M, Paul G, Roybon L, et al. Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson’s disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells. 2006;24(6):1433–40. doi:10.1634/stemcells.2005-0393. 2005-0393 [pii].

    Article  CAS  PubMed  Google Scholar 

  15. Bruce AJ, Boling W, Kindy MS, Peschon J, Kraemer PJ, Carpenter MK, et al. Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat Med. 1996;2(7):788–94.

    Article  CAS  PubMed  Google Scholar 

  16. Buhnemann C, Scholz A, Bernreuther C, Malik CY, Braun H, Schachner M, et al. Neuronal differentiation of transplanted embryonic stem cell-derived precursors in stroke lesions of adult rats. Brain. 2006;129(Pt 12):3238–48.

    Article  PubMed  Google Scholar 

  17. Cai J, Yang M, Poremsky E, Kidd S, Schneider JS, Iacovitti L. Dopaminergic neurons derived from human induced pluripotent stem cells survive and integrate into 6-OHDA-lesioned rats. Stem Cells Dev. 2010;19(7):1017–23. doi:10.1089/scd.2009.0319.

    Article  CAS  PubMed  Google Scholar 

  18. Calegari F, Haubensak W, Haffner C, Huttner WB. Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development. J Neurosci. 2005;25(28):6533–8.

    Article  CAS  PubMed  Google Scholar 

  19. Calzolari F, Michel J, Baumgart EV, Theis F, Gotz M, Ninkovic J. Fast clonal expansion and limited neural stem cell self-renewal in the adult subependymal zone. Nat Neurosci. 2015;18(4):490–2. doi:10.1038/nn.3963. nn.3963 [pii].

    Article  CAS  PubMed  Google Scholar 

  20. Camussi G, Deregibus MC, Cantaluppi V. Role of stem-cell-derived microvesicles in the paracrine action of stem cells. Biochem Soc Trans. 2013;41(1):283–7. doi:10.1042/BST20120192. BST20120192 [pii].

    Article  CAS  PubMed  Google Scholar 

  21. Chau MJ, Deveau TC, Song M, Gu X, Chen D, Wei L. iPSC transplantation increases regeneration and functional recovery after ischemic stroke in neonatal rats. Stem Cells (Dayton, Ohio). 2014;32(12):3075–87. doi:10.1002/stem.1802.

    Article  CAS  Google Scholar 

  22. Chen J, Chopp M. Neurorestorative treatment of stroke: cell and pharmacological approaches. NeuroRx. 2006;3(4):466–73. doi:10.1016/j.nurx.2006.07.007. S1545-5343(06)00129-5 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D, et al. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res. 2003;73(6):778–86. doi:10.1002/jnr.10691.

    Article  CAS  PubMed  Google Scholar 

  24. Chen J, Li Y, Wang L, Lu M, Chopp M. Caspase inhibition by Z-VAD increases the survival of grafted bone marrow cells and improves functional outcome after MCAo in rats. J Neurol Sci. 2002;199(1–2):17–24. doi:S0022510X02000758 [pii].

    Article  CAS  PubMed  Google Scholar 

  25. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke. 2001;32(4):1005–11.

    Article  CAS  PubMed  Google Scholar 

  26. Chen J, Shehadah A, Pal A, Zacharek A, Cui X, Cui Y, et al. Neuroprotective effect of human placenta-derived cell treatment of stroke in rats. Cell Transplant. 2013;22(5):871–9. doi:10.3727/096368911X637380. ct0613chen [pii].

    Article  PubMed  Google Scholar 

  27. Chen J, Zhang C, Jiang H, Li Y, Zhang L, Robin A, et al. Atorvastatin induction of VEGF and BDNF promotes brain plasticity after stroke in mice. J Cereb Blood Flow Metab. 2005;25(2):281–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Chen J, Zhang ZG, Li Y, Wang Y, Wang L, Jiang H, et al. Statins induce angiogenesis, neurogenesis, and synaptogenesis after stroke. Ann Neurol. 2003;53(6):743–51.

    Article  CAS  PubMed  Google Scholar 

  29. Chen JZ, Zhang FR, Tao QM, Wang XX, Zhu JH, Zhu JH. Number and activity of endothelial progenitor cells from peripheral blood in patients with hypercholesterolaemia. Clin Sci (London, England: 1979). 2004;107(3):273–80. doi:10.1042/cs20030389.

    Article  CAS  Google Scholar 

  30. Chen SJ, Chang CM, Tsai SK, Chang YL, Chou SJ, Huang SS, et al. Functional improvement of focal cerebral ischemia injury by subdural transplantation of induced pluripotent stem cells with fibrin glue. Stem Cells Dev. 2010;19(11):1757–67. doi:10.1089/scd.2009.0452.

    Article  CAS  PubMed  Google Scholar 

  31. Chen TS, Lim SK. Measurement of precursor miRNA in exosomes from human ESC-derived mesenchymal stem cells. Methods Mol Biol. 2013;1024:69–86. doi:10.1007/978-1-62703-453-1_6.

    Article  CAS  PubMed  Google Scholar 

  32. Clarke DL, Johansson CB, Wilbertz J, Veress B, Nilsson E, Karlstrom H, et al. Generalized potential of adult neural stem cells. Science. 2000;288(5471):1660–3.

    Article  CAS  PubMed  Google Scholar 

  33. Collino F, Deregibus MC, Bruno S, Sterpone L, Aghemo G, Viltono L, et al. Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS ONE. 2010;5(7), e11803. doi:10.1371/journal.pone.0011803.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Curtis MA, Kam M, Nannmark U, Anderson MF, Axell MZ, Wikkelso C, et al. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science. 2007;315(5816):1243–9.

    Article  CAS  PubMed  Google Scholar 

  35. Czepiel M, Balasubramaniyan V, Schaafsma W, Stancic M, Mikkers H, Huisman C, et al. Differentiation of induced pluripotent stem cells into functional oligodendrocytes. Glia. 2011;59(6):882–92. doi:10.1002/glia.21159.

    Article  PubMed  Google Scholar 

  36. Daadi MM, Li Z, Arac A, Grueter BA, Sofilos M, Malenka RC, et al. Molecular and magnetic resonance imaging of human embryonic stem cell-derived neural stem cell grafts in ischemic rat brain. Mol Ther. 2009;17(7):1282–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Daadi MM, Maag AL, Steinberg GK. Adherent self-renewable human embryonic stem cell-derived neural stem cell line: functional engraftment in experimental stroke model. PLoS ONE. 2008;3(2), e1644.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Darsalia V, Kallur T, Kokaia Z. Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum. Eur J Neurosci. 2007;26(3):605–14.

    Article  PubMed  Google Scholar 

  39. DeGraba TJ. The role of inflammation after acute stroke: utility of pursuing anti-adhesion molecule therapy. Neurology. 1998;51(3 Suppl 3):S62–8.

    Article  CAS  PubMed  Google Scholar 

  40. Del Zoppo GJ, Saver JL, Jauch EC, Adams Jr HP. Expansion of the time window for treatment of acute ischemic stroke with intravenous tissue plasminogen activator: a science advisory from the American Heart Association/American Stroke Association. Stroke J Cereb Circ. 2009;40(8):2945–8. doi:10.1161/strokeaha.109.192535.

    Article  Google Scholar 

  41. Ding DC, Shyu WC, Chiang MF, Lin SZ, Chang YC, Wang HJ, et al. Enhancement of neuroplasticity through upregulation of beta1-integrin in human umbilical cord-derived stromal cell implanted stroke model. Neurobiol Dis. 2007;27(3):339–53. doi:10.1016/j.nbd.2007.06.010. S0969-9961(07)00114-3 [pii].

    Article  CAS  PubMed  Google Scholar 

  42. Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999;22(9):391–7.

    Article  CAS  PubMed  Google Scholar 

  43. Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci. 1997;17(13):5046–61.

    CAS  PubMed  Google Scholar 

  44. Dome B, Timar J, Ladanyi A, Paku S, Renyi-Vamos F, Klepetko W, et al. Circulating endothelial cells, bone marrow-derived endothelial progenitor cells and proangiogenic hematopoietic cells in cancer: from biology to therapy. Crit Rev Oncol Hematol. 2009;69(2):108–24. doi:10.1016/j.critrevonc.2008.06.009.

    Article  PubMed  Google Scholar 

  45. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7. doi:10.1080/14653240600855905. Q2183N8UT042W62H [pii].

    Article  CAS  PubMed  Google Scholar 

  46. Doyle KP, Simon RP, Stenzel-Poore MP. Mechanisms of ischemic brain damage. Neuropharmacology. 2008;55(3):310–8. doi:10.1016/j.neuropharm.2008.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Endres M, Wang ZQ, Namura S, Waeber C, Moskowitz MA. Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 1997;17(11):1143–51. doi:10.1097/00004647-199711000-00002.

    Article  CAS  Google Scholar 

  48. Erdo F, Buhrle C, Blunk J, Hoehn M, Xia Y, Fleischmann B, et al. Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. J Cereb Blood Flow Metab. 2003;23(7):780–5. doi:10.1097/01.WCB.0000071886.63724.FB.

    PubMed  Google Scholar 

  49. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154–6.

    Article  CAS  PubMed  Google Scholar 

  50. Fan Y, Shen F, Frenzel T, Zhu W, Ye J, Liu J, et al. Endothelial progenitor cell transplantation improves long-term stroke outcome in mice. Ann Neurol. 2010;67(4):488–97. doi:10.1002/ana.21919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol. 2009;8(4):355–69. doi:10.1016/s1474-4422(09)70025-0.

    Article  PubMed  Google Scholar 

  52. Felderhoff-Mueser U, Taylor DL, Greenwood K, Kozma M, Stibenz D, Joashi UC, et al. Fas/CD95/APO-1 can function as a death receptor for neuronal cells in vitro and in vivo and is upregulated following cerebral hypoxic-ischemic injury to the developing rat brain. Brain Pathol (Zurich, Switzerland). 2000;10(1):17–29.

    Article  CAS  Google Scholar 

  53. Ferri KF, Jacotot E, Blanco J, Este JA, Zamzami N, Susin SA, et al. Apoptosis control in syncytia induced by the HIV type 1-envelope glycoprotein complex: role of mitochondria and caspases. J Exp Med. 2000;192(8):1081–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fiskum G, Murphy AN, Beal MF. Mitochondria in neurodegeneration: acute ischemia and chronic neurodegenerative diseases. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 1999;19(4):351–69. doi:10.1097/00004647-199904000-00001.

    Article  CAS  Google Scholar 

  55. Fong CY, Gauthaman K, Bongso A. Teratomas from pluripotent stem cells: a clinical hurdle. J Cell Biochem. 2010;111(4):769–81. doi:10.1002/jcb.22775.

    Article  CAS  PubMed  Google Scholar 

  56. Fournier BP, Larjava H, Hakkinen L. Gingiva as a source of stem cells with therapeutic potential. Stem Cells Dev. 2013;22(24):3157–77. doi:10.1089/scd.2013.0015.

    Article  PubMed  Google Scholar 

  57. Fox LE, Shen J, Ma K, Liu Q, Shi G, Pappas GD, et al. Membrane properties of neuron-like cells generated from adult human bone-marrow-derived mesenchymal stem cells. Stem Cells Dev. 2010;19(12):1831–41. doi:10.1089/scd.2010.0089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Friedenstein AJ, Piatetzky II S, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol. 1966;16(3):381–90.

    CAS  PubMed  Google Scholar 

  59. Fujimoto M, Hayashi H, Takagi Y, Hayase M, Marumo T, Gomi M, et al. Transplantation of telencephalic neural progenitors induced from embryonic stem cells into subacute phase of focal cerebral ischemia. Lab Invest. 2012;92(4):522–31. doi:10.1038/labinvest.2012.1. labinvest20121 [pii].

    Article  PubMed  Google Scholar 

  60. Fujita Y, Yoshioka Y, Ito S, Araya J, Kuwano K, Ochiya T. Intercellular communication by extracellular vesicles and their microRNAs in asthma. Clin Ther. 2014;36(6):873–81. doi:10.1016/j.clinthera.2014.05.006. S0149-2918(14)00263-X [pii].

    Article  CAS  PubMed  Google Scholar 

  61. Fukuchi Y, Nakajima H, Sugiyama D, Hirose I, Kitamura T, Tsuji K. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells. 2004;22(5):649–58. doi:10.1634/stemcells.22-5-649. 22/5/649 [pii].

    Article  CAS  PubMed  Google Scholar 

  62. Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med. 2008;359(9):938–49. doi:10.1056/NEJMra0801082.

    Article  CAS  PubMed  Google Scholar 

  63. Gimble JM, Bunnell BA, Guilak F. Human adipose-derived cells: an update on the transition to clinical translation. Regen Med. 2012;7(2):225–35. doi:10.2217/rme.11.119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Glover LE, Tajiri N, Weinbren NL, Ishikawa H, Shinozuka K, Kaneko Y, et al. A step-up approach for cell therapy in stroke: translational hurdles of bone marrow-derived stem cells. Transl Stroke Res. 2012;3(1):90–8. doi:10.1007/s12975-011-0127-8. 127 [pii].

    Article  PubMed  Google Scholar 

  65. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics – 2013 update: a report from the American Heart Association. Circulation. 2013;127(1):e6–245. doi:10.1161/CIR.0b013e31828124ad.

    Article  PubMed  Google Scholar 

  66. Graham SH, Chen J. Programmed cell death in cerebral ischemia. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2001;21(2):99–109. doi:10.1097/00004647-200102000-00001.

    Article  CAS  Google Scholar 

  67. Gribkoff VK, Starrett Jr JE, Dworetzky SI, Hewawasam P, Boissard CG, Cook DA, et al. Targeting acute ischemic stroke with a calcium-sensitive opener of maxi-K potassium channels. Nat Med. 2001;7(4):471–7. doi:10.1038/86546.

    Article  CAS  PubMed  Google Scholar 

  68. Gucciardo L, Lories R, Ochsenbein-Kolble N, Done E, Zwijsen A, Deprest J. Fetal mesenchymal stem cells: isolation, properties and potential use in perinatology and regenerative medicine. BJOG. 2009;116(2):166–72. doi:10.1111/j.1471-0528.2008.02005.x. BJO2005 [pii].

    Article  CAS  PubMed  Google Scholar 

  69. Gutierrez-Aranda I, Ramos-Mejia V, Bueno C, Munoz-Lopez M, Real PJ, Macia A, et al. Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells (Dayton, Ohio). 2010;28(9):1568–70. doi:10.1002/stem.471.

    Article  Google Scholar 

  70. Gutierrez-Fernandez M, Fuentes B, Rodriguez-Frutos B, Ramos-Cejudo J, Vallejo-Cremades MT, Diez-Tejedor E. Trophic factors and cell therapy to stimulate brain repair after ischaemic stroke. J Cell Mol Med. 2012;16(10):2280–90. doi:10.1111/j.1582-4934.2012.01575.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gutierrez-Fernandez M, Rodriguez-Frutos B, Otero-Ortega L, Ramos-Cejudo J, Fuentes B, Diez-Tejedor E. Adipose tissue-derived stem cells in stroke treatment: from bench to bedside. Discov Med. 2013;16(86):37–43.

    PubMed  Google Scholar 

  72. Gutierrez-Fernandez M, Rodriguez-Frutos B, Ramos-Cejudo J, Teresa Vallejo-Cremades M, Fuentes B, Cerdan S, et al. Effects of intravenous administration of allogenic bone marrow- and adipose tissue-derived mesenchymal stem cells on functional recovery and brain repair markers in experimental ischemic stroke. Stem Cell Res Ther. 2013;4(1):11. doi:10.1186/scrt159. scrt159 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hao L, Zou Z, Tian H, Zhang Y, Zhou H, Liu L. Stem cell-based therapies for ischemic stroke. Biomed Res Int. 2014;2014:468748. doi:10.1155/2014/468748.

    PubMed  PubMed Central  Google Scholar 

  74. Harms KM, Li L, Cunningham LA. Murine neural stem/progenitor cells protect neurons against ischemia by HIF-1alpha-regulated VEGF signaling. PLoS ONE. 2010;5(3), e9767. doi:10.1371/journal.pone.0009767.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Hayashi J, Takagi Y, Fukuda H, Imazato T, Nishimura M, Fujimoto M, et al. Primate embryonic stem cell-derived neuronal progenitors transplanted into ischemic brain. J Cereb Blood Flow Metab. 2006;26(7):906–14. doi:10.1038/sj.jcbfm.9600247. 9600247 [pii].

    Article  PubMed  Google Scholar 

  76. Hedlund M, Stenqvist AC, Nagaeva O, Kjellberg L, Wulff M, Baranov V, et al. Human placenta expresses and secretes NKG2D ligands via exosomes that down-modulate the cognate receptor expression: evidence for immunosuppressive function. J Immunol. 2009;183(1):340–51. doi:10.4049/jimmunol.0803477. 183/1/340 [pii].

    Article  CAS  PubMed  Google Scholar 

  77. Hicks AU, Lappalainen RS, Narkilahti S, Suuronen R, Corbett D, Sivenius J, et al. Transplantation of human embryonic stem cell-derived neural precursor cells and enriched environment after cortical stroke in rats: cell survival and functional recovery. Eur J Neurosci. 2009;29(3):562–74. doi:10.1111/j.1460-9568.2008.06599.x. EJN6599 [pii].

    Article  PubMed  Google Scholar 

  78. Hodges H, Sowinski P, Fleming P, Kershaw TR, Sinden JD, Meldrum BS, et al. Contrasting effects of fetal CA1 and CA3 hippocampal grafts on deficits in spatial learning and working memory induced by global cerebral ischaemia in rats. Neuroscience. 1996;72(4):959–88.

    Article  CAS  PubMed  Google Scholar 

  79. Hoehn M, Kustermann E, Blunk J, Wiedermann D, Trapp T, Wecker S, et al. Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci U S A. 2002;99(25):16267–72. doi:10.1073/pnas.242435499. 242435499 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Holvoet P, Collen D. Thrombosis and atherosclerosis. Curr Opin Lipidol. 1997;8(5):320–8.

    Article  CAS  PubMed  Google Scholar 

  81. Honmou O, Onodera R, Sasaki M, Waxman SG, Kocsis JD. Mesenchymal stem cells: therapeutic outlook for stroke. Trends Mol Med. 2012;18(5):292–7. doi:10.1016/j.molmed.2012.02.003. S1471-4914(12)00034-2 [pii].

    Article  CAS  PubMed  Google Scholar 

  82. Hou SW, Wang YQ, Xu M, Shen DH, Wang JJ, Huang F, et al. Functional integration of newly generated neurons into striatum after cerebral ischemia in the adult rat brain. Stroke. 2008;39(10):2837–44.

    Article  CAS  PubMed  Google Scholar 

  83. Huang W, Mo X, Qin C, Zheng J, Liang Z, Zhang C. Transplantation of differentiated bone marrow stromal cells promotes motor functional recovery in rats with stroke. Neurol Res. 2013;35(3):320–8. doi:10.1179/1743132812Y.0000000151.

    Article  PubMed  CAS  Google Scholar 

  84. Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science (New York, NY). 1994;265(5180):1883–5.

    Article  CAS  Google Scholar 

  85. Huttner WB, Kosodo Y. Symmetric versus asymmetric cell division during neurogenesis in the developing vertebrate central nervous system. Curr Opin Cell Biol. 2005;17(6):648–57.

    Article  CAS  PubMed  Google Scholar 

  86. Iadecola C, Zhang F, Casey R, Nagayama M, Ross ME. Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J Neurosci Off J Soc Neurosci. 1997;17(23):9157–64.

    CAS  Google Scholar 

  87. Igura K, Zhang X, Takahashi K, Mitsuru A, Yamaguchi S, Takashi TA. Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy. 2004;6(6):543–53.

    Article  CAS  PubMed  Google Scholar 

  88. Ikegame Y, Yamashita K, Hayashi S, Mizuno H, Tawada M, You F, et al. Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy. Cytotherapy. 2011;13(6):675–85. doi:10.3109/14653249.2010.549122.

    Article  CAS  PubMed  Google Scholar 

  89. Ikegame Y, Yamashita K, Nakashima S, Nomura Y, Yonezawa S, Asano Y, et al. Fate of graft cells: what should be clarified for development of mesenchymal stem cell therapy for ischemic stroke? Front Cell Neurosci. 2014;8:322. doi:10.3389/fncel.2014.00322.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Isik S, Zaim M, Yildiz MT, Negis Y, Kunduraci T, Karakas N, et al. DNA topoisomerase IIbeta as a molecular switch in neural differentiation of mesenchymal stem cells. Ann Hematol. 2015;94(2):307–18. doi:10.1007/s00277-014-2209-7.

    Article  CAS  PubMed  Google Scholar 

  91. Janardhan V, Qureshi AI. Mechanisms of ischemic brain injury. Curr Cardiol Rep. 2004;6(2):117–23.

    Article  PubMed  Google Scholar 

  92. Jensen MB, Yan H, Krishnaney-Davison R, Al Sawaf A, Zhang SC. Survival and differentiation of transplanted neural stem cells derived from human induced pluripotent stem cells in a rat stroke model. J Stroke Cerebrovasc Dis Off J Natl Stroke Assoc. 2013;22(4):304–8. doi:10.1016/j.jstrokecerebrovasdis.2011.09.008.

    Article  Google Scholar 

  93. Jiang M, Lv L, Ji H, Yang X, Zhu W, Cai L, et al. Induction of pluripotent stem cells transplantation therapy for ischemic stroke. Mol Cell Biochem. 2011;354(1–2):67–75. doi:10.1007/s11010-011-0806-5.

    Article  CAS  PubMed  Google Scholar 

  94. Jin K, Minami M, Lan JQ, Mao XO, Batteur S, Simon RP, et al. Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci U S A. 2001;98(8):4710–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jin K, Wang X, Xie L, Mao XO, Zhu W, Wang Y, et al. Evidence for stroke-induced neurogenesis in the human brain. Proc Natl Acad Sci U S A. 2006;103(35):13198–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Johnstone SA, Liley M, Dalby MJ, Barnett SC. Comparison of human olfactory and skeletal MSCs using osteogenic nanotopography to demonstrate bone-specific bioactivity of the surfaces. Acta Biomater. 2015;13:266–76. doi:10.1016/j.actbio.2014.11.027. S1742-7061(14)00521-2 [pii].

    Article  CAS  PubMed  Google Scholar 

  97. Jung KH, Chu K, Lee ST, Park HK, Kim DH, Kim JH, et al. Circulating endothelial progenitor cells as a pathogenetic marker of moyamoya disease. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2008;28(11):1795–803. doi:10.1038/jcbfm.2008.67.

    Article  CAS  Google Scholar 

  98. Jung KH, Roh JK. Circulating endothelial progenitor cells in cerebrovascular disease. J Clin Neurol (Seoul, Korea). 2008;4(4):139–47. doi:10.3988/jcn.2008.4.4.139.

    Article  Google Scholar 

  99. Kageyama R, Ohtsuka T, Hatakeyama J, Ohsawa R. Roles of bHLH genes in neural stem cell differentiation. Exp Cell Res. 2005;306(2):343–8.

    Article  CAS  PubMed  Google Scholar 

  100. Kallur T, Darsalia V, Lindvall O, Kokaia Z. Human fetal cortical and striatal neural stem cells generate region-specific neurons in vitro and differentiate extensively to neurons after intrastriatal transplantation in neonatal rats. J Neurosci Res. 2006;84(8):1630–44.

    Article  CAS  PubMed  Google Scholar 

  101. Kaneko Y, Tajiri N, Shinozuka K, Glover LE, Weinbren NL, Cortes L, et al. Cell therapy for stroke: emphasis on optimizing safety and efficacy profile of endothelial progenitor cells. Curr Pharm Des. 2012;18(25):3731–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Katakowski M, Zhang ZG, Chen J, Zhang R, Wang Y, Jiang H, et al. Phosphoinositide 3-kinase promotes adult subventricular neuroblast migration after stroke. J Neurosci Res. 2003;74(4):494–501.

    Article  CAS  PubMed  Google Scholar 

  103. Kawai H, Yamashita T, Ohta Y, Deguchi K, Nagotani S, Zhang X, et al. Tridermal tumorigenesis of induced pluripotent stem cells transplanted in ischemic brain. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2010;30(8):1487–93. doi:10.1038/jcbfm.2010.32.

    Article  Google Scholar 

  104. Kelly S, Bliss TM, Shah AK, Sun GH, Ma M, Foo WC, et al. Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci U S A. 2004;101(32):11839–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kim DY, Park SH, Lee SU, Choi DH, Park HW, Paek SH, et al. Effect of human embryonic stem cell-derived neuronal precursor cell transplantation into the cerebral infarct model of rat with exercise. Neurosci Res. 2007;58(2):164–75. doi:10.1016/j.neures.2007.02.016. S0168-0102(07)00087-9 [pii].

    Article  CAS  PubMed  Google Scholar 

  106. Knoepfler PS. Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells (Dayton, Ohio). 2009;27(5):1050–6. doi:10.1002/stem.37.

    Article  CAS  Google Scholar 

  107. Kranz A, Wagner DC, Kamprad M, Scholz M, Schmidt UR, Nitzsche F, et al. Transplantation of placenta-derived mesenchymal stromal cells upon experimental stroke in rats. Brain Res. 2010;1315:128–36. doi:10.1016/j.brainres.2009.12.001. S0006-8993(09)02602-X [pii].

    Article  CAS  PubMed  Google Scholar 

  108. Kroemer G, Petit P, Zamzami N, Vayssiere JL, Mignotte B. The biochemistry of programmed cell death. FASEB J Off Publ Fed Am Soc Exp Biol. 1995;9(13):1277–87.

    CAS  Google Scholar 

  109. Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med. 2000;6(5):513–9. doi:10.1038/74994.

    Article  CAS  PubMed  Google Scholar 

  110. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Kobune M, Hirai S, et al. BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol Ther. 2004;9(2):189–97. doi:10.1016/j.ymthe.2003.10.012. S152500160300354X [pii].

    Article  CAS  PubMed  Google Scholar 

  111. Lai RC, Chen TS, Lim SK. Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regen Med. 2011;6(4):481–92. doi:10.2217/rme.11.35.

    Article  PubMed  Google Scholar 

  112. Lapergue B, Mohammad A, Shuaib A. Endothelial progenitor cells and cerebrovascular diseases. Prog Neurobiol. 2007;83(6):349–62. doi:10.1016/j.pneurobio.2007.08.001.

    Article  CAS  PubMed  Google Scholar 

  113. Lee JK, Park SR, Jung BK, Jeon YK, Lee YS, Kim MK, et al. Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS ONE. 2013;8(12), e84256. doi:10.1371/journal.pone.0084256. PONE-D-13-14677 [pii].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells. 2010;28(6):1099–106. doi:10.1002/stem.430.

    Article  PubMed  Google Scholar 

  115. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997;91(4):479–89.

    Article  CAS  PubMed  Google Scholar 

  116. Li Y, Chen J, Chopp M. Adult bone marrow transplantation after stroke in adult rats. Cell Transplant. 2001;10(1):31–40.

    CAS  PubMed  Google Scholar 

  117. Li Y, Chen J, Wang L, Lu M, Chopp M. Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology. 2001;56(12):1666–72.

    Article  CAS  PubMed  Google Scholar 

  118. Li Y, Chopp M, Chen J, Wang L, Gautam SC, Xu YX, et al. Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab. 2000;20(9):1311–9. doi:10.1097/00004647-200009000-00006.

    Article  CAS  PubMed  Google Scholar 

  119. Li YF, Ren LN, Guo G, Cannella LA, Chernaya V, Samuel S, et al. Endothelial progenitor cells in ischemic stroke: an exploration from hypothesis to therapy. J Hematol Oncol. 2015;8:33. doi:10.1186/s13045-015-0130-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Liu J. Induced pluripotent stem cell-derived neural stem cells: new hope for stroke? Stem Cell Res Ther. 2013;4(5):115. doi:10.1186/scrt326.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Liu N, Deguchi K, Yamashita T, Liu W, Ikeda Y, Abe K. Intracerebral transplantation of bone marrow stromal cells ameliorates tissue plasminogen activator-induced brain damage after cerebral ischemia in mice detected by in vivo and ex vivo optical imaging. J Neurosci Res. 2012;90(11):2086–93. doi:10.1002/jnr.23104.

    Article  CAS  PubMed  Google Scholar 

  122. Liu N, Zhang Y, Fan L, Yuan M, Du H, Cheng R, et al. Effects of transplantation with bone marrow-derived mesenchymal stem cells modified by survivin on experimental stroke in rats. J Transl Med. 2011;9:105. doi:10.1186/1479-5876-9-105. 1479-5876-9-105 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu X. Beyond the time window of intravenous thrombolysis: standing by or by stenting? Interv Neurol. 2012;1(1):3–15. doi:10.1159/000338389.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Liu XS, Zhang ZG, Zhang RL, Gregg S, Morris DC, Wang Y, et al. Stroke induces gene profile changes associated with neurogenesis and angiogenesis in adult subventricular zone progenitor cells. J Cereb Blood Flow Metab. 2007;27(3):564–74.

    Article  CAS  PubMed  Google Scholar 

  125. Liu YP, Seckin H, Izci Y, Du ZW, Yan YP, Baskaya MK. Neuroprotective effects of mesenchymal stem cells derived from human embryonic stem cells in transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 2009;29(4):780–91. doi:10.1038/jcbfm.2009.1. jcbfm20091 [pii].

    Article  PubMed  CAS  Google Scholar 

  126. Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci. 2003;4(5):399–415. doi:10.1038/nrn1106.

    Article  CAS  PubMed  Google Scholar 

  127. Lorenzo HK, Susin SA, Penninger J, Kroemer G. Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death. Cell Death Differ. 1999;6(6):516–24. doi:10.1038/sj.cdd.4400527.

    Article  CAS  PubMed  Google Scholar 

  128. Love S. Apoptosis and brain ischaemia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2003;27(2):267–82. doi:10.1016/s0278-5846(03)00022-8.

    Article  CAS  Google Scholar 

  129. Luo Y, Cao G, Pei W, O’Horo C, Graham SH, Chen J. Induction of caspase-activated deoxyribonuclease activity after focal cerebral ischemia and reperfusion. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2002;22(1):15–20. doi:10.1097/00004647-200201000-00002.

    Article  CAS  Google Scholar 

  130. Luskin MB, Zigova T, Soteres BJ, Stewart RR. Neuronal progenitor cells derived from the anterior subventricular zone of the neonatal rat forebrain continue to proliferate in vitro and express a neuronal phenotype. Mol Cell Neurosci. 1997;8(5):351–66.

    Article  CAS  PubMed  Google Scholar 

  131. Ma F, Morancho A, Montaner J, Rosell A. Endothelial progenitor cells and revascularization following stroke. Brain Res. 1623;2015:150–9. doi:10.1016/j.brainres.2015.02.010.

    Google Scholar 

  132. Macas J, Nern C, Plate KH, Momma S. Increased generation of neuronal progenitors after ischemic injury in the aged adult human forebrain. J Neurosci. 2006;26(50):13114–9.

    Article  CAS  PubMed  Google Scholar 

  133. Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell. 2007;1(1):55–70. doi:10.1016/j.stem.2007.05.014.

    Article  CAS  PubMed  Google Scholar 

  134. Marion RM, Strati K, Li H, Murga M, Blanco R, Ortega S, et al. A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature. 2009;460(7259):1149–53. doi:10.1038/nature08287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78(12):7634–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Matsuyama T, Hata R, Yamamoto Y, Tagaya M, Akita H, Uno H, et al. Localization of Fas antigen mRNA induced in postischemic murine forebrain by in situ hybridization. Brain Res Mol Brain Res. 1995;34(1):166–72.

    Article  CAS  PubMed  Google Scholar 

  137. Mattsson B, Sorensen JC, Zimmer J, Johansson BB. Neural grafting to experimental neocortical infarcts improves behavioral outcome and reduces thalamic atrophy in rats housed in enriched but not in standard environments. Stroke. 1997;28(6):1225–31. discussion 31–2.

    Article  CAS  PubMed  Google Scholar 

  138. Mayfield AE, Tilokee EL, Davis DR. Resident cardiac stem cells and their role in stem cell therapies for myocardial repair. Can J Cardiol. 2014;30(11):1288–98. doi:10.1016/j.cjca.2014.03.018. S0828-282X(14)00164-0 [pii].

    Article  PubMed  Google Scholar 

  139. Mehrabi M, Mansouri K, Hosseinkhani S, Yarani R, Yari K, Bakhtiari M, et al. Differentiation of human skin-derived precursor cells into functional islet-like insulin-producing cell clusters. In Vitro Cell Dev Biol Anim. 2015;51(6):595–603. doi:10.1007/s11626-015-9866-2.

    Article  CAS  PubMed  Google Scholar 

  140. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466(7308):829–34. doi:10.1038/nature09262. nature09262 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Minger SL, Ekonomou A, Carta EM, Chinoy A, Perry RH, Ballard CG. Endogenous neurogenesis in the human brain following cerebral infarction. Regen Med. 2007;2(1):69–74.

    Article  PubMed  Google Scholar 

  142. Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K, et al. Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol. 2009;27(8):743–5. doi:10.1038/nbt.1554.

    Article  CAS  PubMed  Google Scholar 

  143. Moniche F, Gonzalez A, Gonzalez-Marcos JR, Carmona M, Pinero P, Espigado I, et al. Intra-arterial bone marrow mononuclear cells in ischemic stroke: a pilot clinical trial. Stroke. 2012;43(8):2242–4. doi:10.1161/STROKEAHA.112.659409. STROKEAHA.112.659409 [pii].

    Article  PubMed  Google Scholar 

  144. Moubarik C, Guillet B, Youssef B, Codaccioni JL, Piercecchi MD, Sabatier F, et al. Transplanted late outgrowth endothelial progenitor cells as cell therapy product for stroke. Stem Cell Rev. 2011;7(1):208–20. doi:10.1007/s12015-010-9157-y.

    Article  PubMed  Google Scholar 

  145. Nagai N, Kawao N, Okada K, Okumoto K, Teramura T, Ueshima S, et al. Systemic transplantation of embryonic stem cells accelerates brain lesion decrease and angiogenesis. Neuroreport. 2010;21(8):575–9. doi:10.1097/WNR.0b013e32833a7d2c.

    Article  PubMed  Google Scholar 

  146. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 2008;26(1):101–6. doi:10.1038/nbt1374.

    Article  CAS  PubMed  Google Scholar 

  147. Nakagawa M, Taniguchi Y, Senda S, Takizawa N, Ichisaka T, Asano K, et al. A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci Rep. 2014;4:3594. doi:10.1038/srep03594.

    PubMed  PubMed Central  Google Scholar 

  148. Nawashiro H, Martin D, Hallenbeck JM. Neuroprotective effects of TNF binding protein in focal cerebral ischemia. Brain Res. 1997;778(2):265–71.

    Article  CAS  PubMed  Google Scholar 

  149. Nishishita T, Ouchi K, Zhang X, Inoue M, Inazawa T, Yoshiura K, et al. A potential pro-angiogenic cell therapy with human placenta-derived mesenchymal cells. Biochem Biophys Res Commun. 2004;325(1):24–31. doi:10.1016/j.bbrc.2004.10.003. S0006-291X(04)02289-2 [pii].

    Article  CAS  PubMed  Google Scholar 

  150. Nolan DJ, Ciarrocchi A, Mellick AS, Jaggi JS, Bambino K, Gupta S, et al. Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev. 2007;21(12):1546–58. doi:10.1101/gad.436307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Nowakowski RS, Lewin SB, Miller MW. Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J Neurocytol. 1989;18(3):311–8.

    Article  CAS  PubMed  Google Scholar 

  152. Ohta T, Kikuta K, Imamura H, Takagi Y, Nishimura M, Arakawa Y, et al. Administration of ex vivo-expanded bone marrow-derived endothelial progenitor cells attenuates focal cerebral ischemia-reperfusion injury in rats. Neurosurgery. 2006;59(3):679–86. doi:10.1227/01.neu.0000229058.08706.88. discussion -86.

    Article  PubMed  Google Scholar 

  153. Okabe S, Forsberg-Nilsson K, Spiro AC, Segal M, McKay RD. Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev. 1996;59(1):89–102. doi:0925477396005722 [pii].

    Article  CAS  PubMed  Google Scholar 

  154. Okazaki T, Magaki T, Takeda M, Kajiwara Y, Hanaya R, Sugiyama K, et al. Intravenous administration of bone marrow stromal cells increases survivin and Bcl-2 protein expression and improves sensorimotor function following ischemia in rats. Neurosci Lett. 2008;430(2):109–14. doi:10.1016/j.neulet.2007.10.046. S0304-3940(07)01140-8 [pii].

    Article  CAS  PubMed  Google Scholar 

  155. Oki K, Tatarishvili J, Wood J, Koch P, Wattananit S, Mine Y, et al. Human-induced pluripotent stem cells form functional neurons and improve recovery after grafting in stroke-damaged brain. Stem Cells (Dayton, Ohio). 2012;30(6):1120–33. doi:10.1002/stem.1104.

    Article  CAS  Google Scholar 

  156. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448(7151):313–7. doi:10.1038/nature05934.

    Article  CAS  PubMed  Google Scholar 

  157. Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, et al. A more efficient method to generate integration-free human iPS cells. Nat Methods. 2011;8(5):409–12. doi:10.1038/nmeth.1591.

    Article  CAS  PubMed  Google Scholar 

  158. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science (New York, NY). 2008;322(5903):949–53. doi:10.1126/science.1164270.

    Article  CAS  Google Scholar 

  159. Onda T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD. Therapeutic benefits by human mesenchymal stem cells (hMSCs) and Ang-1 gene-modified hMSCs after cerebral ischemia. J Cereb Blood Flow Metab. 2008;28(2):329–40. doi:10.1038/sj.jcbfm.9600527. 9600527 [pii].

    Article  CAS  PubMed  Google Scholar 

  160. Oyamada N, Itoh H, Sone M, Yamahara K, Miyashita K, Park K, et al. Transplantation of vascular cells derived from human embryonic stem cells contributes to vascular regeneration after stroke in mice. J Transl Med. 2008;6:54. doi:10.1186/1479-5876-6-54. 1479-5876-6-54 [pii].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Parent JM, Vexler ZS, Gong C, Derugin N, Ferriero DM. Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol. 2002;52(6):802–13.

    Article  PubMed  Google Scholar 

  162. Park S, Koh SE, Maeng S, Lee WD, Lim J, Lee YJ. Neural progenitors generated from the mesenchymal stem cells of first-trimester human placenta matured in the hypoxic-ischemic rat brain and mediated restoration of locomotor activity. Placenta. 2011;32(3):269–76. doi:10.1016/j.placenta.2010.12.027. S0143-4004(11)00011-7 [pii].

    Article  CAS  PubMed  Google Scholar 

  163. Parras CM, Galli R, Britz O, Soares S, Galichet C, Battiste J, et al. Mash1 specifies neurons and oligodendrocytes in the postnatal brain. Embo J. 2004;23(22):4495–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Paspala SA, Murthy TV, Mahaboob VS, Habeeb MA. Pluripotent stem cells – a review of the current status in neural regeneration. Neurol India. 2011;59(4):558–65.

    Article  PubMed  Google Scholar 

  165. Paul G, Ozen I, Christophersen NS, Reinbothe T, Bengzon J, Visse E, et al. The adult human brain harbors multipotent perivascular mesenchymal stem cells. PLoS ONE. 2012;7(4), e35577. doi:10.1371/journal.pone.0035577. PONE-D-11-11140 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Polentes J, Jendelova P, Cailleret M, Braun H, Romanyuk N, Tropel P, et al. Human induced pluripotent stem cells improve stroke outcome and reduce secondary degeneration in the recipient brain. Cell Transplant. 2012;21(12):2587–602. doi:10.3727/096368912x653228.

    Article  PubMed  Google Scholar 

  167. Portmann-Lanz CB, Schoeberlein A, Huber A, Sager R, Malek A, Holzgreve W, et al. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am J Obstet Gynecol. 2006;194(3):664–73. doi:10.1016/j.ajog.2006.01.101. S0002-9378(06)00175-X [pii].

    Article  CAS  PubMed  Google Scholar 

  168. Prather WR, Toren A, Meiron M, Ofir R, Tschope C, Horwitz EM. The role of placental-derived adherent stromal cell (PLX-PAD) in the treatment of critical limb ischemia. Cytotherapy. 2009;11(4):427–34. doi:10.1080/14653240902849762. 912390024 [pii].

    Article  CAS  PubMed  Google Scholar 

  169. Quinones-Hinojosa A, Sanai N, Soriano-Navarro M, Gonzalez-Perez O, Mirzadeh Z, Gil-Perotin S, et al. Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol. 2006;494(3):415–34.

    Article  PubMed  Google Scholar 

  170. Record M, Carayon K, Poirot M, Silvente-Poirot S. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim Biophys Acta. 2014;1841(1):108–20. doi:10.1016/j.bbalip.2013.10.004. S1388-1981(13)00219-9 [pii].

    Article  CAS  PubMed  Google Scholar 

  171. Record M, Subra C, Silvente-Poirot S, Poirot M. Exosomes as intercellular signalosomes and pharmacological effectors. Biochem Pharmacol. 2011;81(10):1171–82. doi:10.1016/j.bcp.2011.02.011. S0006-2952(11)00115-8 [pii].

    Article  CAS  PubMed  Google Scholar 

  172. Reubinoff BE, Itsykson P, Turetsky T, Pera MF, Reinhartz E, Itzik A, et al. Neural progenitors from human embryonic stem cells. Nat Biotechnol. 2001;19(12):1134–40. doi:10.1038/nbt1201-1134. nbt1201-1134 [pii].

    Article  CAS  PubMed  Google Scholar 

  173. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol. 2000;18(4):399–404. doi:10.1038/74447.

    Article  CAS  PubMed  Google Scholar 

  174. Rosell A, Morancho A, Navarro-Sobrino M, Martinez-Saez E, Hernandez-Guillamon M, Lope-Piedrafita S, et al. Factors secreted by endothelial progenitor cells enhance neurorepair responses after cerebral ischemia in mice. PLoS ONE. 2013;8(9), e73244. doi:10.1371/journal.pone.0073244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Rothman SM, Olney JW. Excitotoxicity and the NMDA receptor – still lethal after eight years. Trends Neurosci. 1995;18(2):57–8.

    CAS  PubMed  Google Scholar 

  176. Rouhl RP, van Oostenbrugge RJ, Damoiseaux J, Tervaert JW, Lodder J. Endothelial progenitor cell research in stroke: a potential shift in pathophysiological and therapeutical concepts. Stroke J Cereb Circ. 2008;39(7):2158–65. doi:10.1161/strokeaha.107.507251.

    Article  Google Scholar 

  177. Sakaguchi M, Okano H. Neural stem cells, adult neurogenesis, and galectin-1: from bench to bedside. Dev Neurobiol. 2012;72(7):1059–67.

    Article  CAS  PubMed  Google Scholar 

  178. Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature. 2004;427(6976):740–4.

    Article  CAS  PubMed  Google Scholar 

  179. Sanberg PR, Eve DJ, Metcalf C, Borlongan CV. Advantages and challenges of alternative sources of adult-derived stem cells for brain repair in stroke. Prog Brain Res. 2012;201:99–117. doi:10.1016/B978-0-444-59544-7.00006-8. B978-0-444-59544-7.00006-8 [pii].

    Article  PubMed  Google Scholar 

  180. Schoeberlein A, Mueller M, Reinhart U, Sager R, Messerli M, Surbek DV. Homing of placenta-derived mesenchymal stem cells after perinatal intracerebral transplantation in a rat model. Am J Obstet Gynecol. 2011;205(3):277 e1–6. doi:10.1016/j.ajog.2011.06.044. S0002-9378(11)00772-1 [pii].

    Article  Google Scholar 

  181. Seminatore C, Polentes J, Ellman D, Kozubenko N, Itier V, Tine S, et al. The postischemic environment differentially impacts teratoma or tumor formation after transplantation of human embryonic stem cell-derived neural progenitors. Stroke. 2010;41(1):153–9. doi:10.1161/STROKEAHA.109.563015. STROKEAHA.109.563015 [pii].

    Article  PubMed  Google Scholar 

  182. Shah S, Stroke Pathophysiology. Foundation for education and research in neurological emergencies. www.uicedu/com/ferne/pdf/pathophys0501pdf,2000. 2000.

  183. Shen LH, Xin H, Li Y, Zhang RL, Cui Y, Zhang L, et al. Endogenous tissue plasminogen activator mediates bone marrow stromal cell-induced neurite remodeling after stroke in mice. Stroke. 2011;42(2):459–64. doi:10.1161/STROKEAHA.110.593863. STROKEAHA.110.593863 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Shiraishi K, Sharp FR, Simon RP. Sequential metabolic changes in rat brain following middle cerebral artery occlusion: a 2-deoxyglucose study. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 1989;9(6):765–73. doi:10.1038/jcbfm.1989.110.

    Article  CAS  Google Scholar 

  185. Shiratsuki S, Terai S, Murata Y, Takami T, Yamamoto N, Fujisawa K, et al. Enhanced survival of mice infused with bone marrow-derived as compared with adipose-derived mesenchymal stem cells. Hepatol Res. 2015;45(13):1353–9. doi:10.1111/hepr.12507.

    Article  CAS  PubMed  Google Scholar 

  186. Siesjo BK. Cell damage in the brain: a speculative synthesis. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 1981;1(2):155–85. doi:10.1038/jcbfm.1981.18.

    Article  CAS  Google Scholar 

  187. Sinden JD, Rashid-Doubell F, Kershaw TR, Nelson A, Chadwick A, Jat PS, et al. Recovery of spatial learning by grafts of a conditionally immortalized hippocampal neuroepithelial cell line into the ischaemia-lesioned hippocampus. Neuroscience. 1997;81(3):599–608.

    Article  CAS  PubMed  Google Scholar 

  188. Singh VK, Kalsan M, Kumar N, Saini A, Chandra R. Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Front Cell Dev Biol. 2015;3:2. doi:10.3389/fcell.2015.00002.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Sinor AD, Lillien L. Akt-1 expression level regulates CNS precursors. J Neurosci. 2004;24(39):8531–41.

    Article  CAS  PubMed  Google Scholar 

  190. Snyder EY, Deitcher DL, Walsh C, Arnold-Aldea S, Hartwieg EA, Cepko CL. Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell. 1992;68(1):33–51.

    Article  CAS  PubMed  Google Scholar 

  191. Sobrino T, Hurtado O, Moro MA, Rodriguez-Yanez M, Castellanos M, Brea D, et al. The increase of circulating endothelial progenitor cells after acute ischemic stroke is associated with good outcome. Stroke J Cereb Circ. 2007;38(10):2759–64. doi:10.1161/strokeaha.107.484386.

    Article  Google Scholar 

  192. Sonntag KC, Pruszak J, Yoshizaki T, van Arensbergen J, Sanchez-Pernaute R, Isacson O. Enhanced yield of neuroepithelial precursors and midbrain-like dopaminergic neurons from human embryonic stem cells using the bone morphogenic protein antagonist noggin. Stem Cells. 2007;25(2):411–8. doi:10.1634/stemcells.2006-0380. 2006-0380 [pii].

    Article  CAS  PubMed  Google Scholar 

  193. Sorensen JC, Grabowski M, Zimmer J, Johansson BB. Fetal neocortical tissue blocks implanted in brain infarcts of adult rats interconnect with the host brain. Exp Neurol. 1996;138(2):227–35.

    Article  CAS  PubMed  Google Scholar 

  194. Sorensen JC, Mattsson B, Andreasen A, Johansson BB. Rapid disappearance of zinc positive terminals in focal brain ischemia. Brain Res. 1998;812(1–2):265–9.

    Article  CAS  PubMed  Google Scholar 

  195. Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone. 2003;33(6):919–26. doi:S8756328203002679 [pii].

    Article  PubMed  Google Scholar 

  196. Stephan RP, Reilly CR, Witte PL. Impaired ability of bone marrow stromal cells to support B-lymphopoiesis with age. Blood. 1998;91(1):75–88.

    CAS  PubMed  Google Scholar 

  197. Stock P, Bruckner S, Winkler S, Dollinger MM, Christ B. Human bone marrow mesenchymal stem cell-derived hepatocytes improve the mouse liver after acute acetaminophen intoxication by preventing progress of injury. Int J Mol Sci. 2014;15(4):7004–28. doi:10.3390/ijms15047004. ijms15047004 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Suarez-Monteagudo C, Hernandez-Ramirez P, Alvarez-Gonzalez L, Garcia-Maeso I, de la Cuetara-Bernal K, Castillo-Diaz L, et al. Autologous bone marrow stem cell neurotransplantation in stroke patients. An open study. Restor Neurol Neurosci. 2009;27(3):151–61. doi:10.3233/RNN-2009-0483. 085W5360088471V2 [pii].

    PubMed  Google Scholar 

  199. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature. 1999;397(6718):441–6. doi:10.1038/17135.

    Article  CAS  PubMed  Google Scholar 

  200. Tae-Hoon L, Yoon-Seok L. Transplantation of mouse embryonic stem cell after middle cerebral artery occlusion. Acta Cir Bras. 2012;27(4):333–9. doi:S0102-86502012000400009 [pii].

    Article  PubMed  Google Scholar 

  201. Taguchi A, Matsuyama T, Moriwaki H, Hayashi T, Hayashida K, Nagatsuka K, et al. Circulating CD34-positive cells provide an index of cerebrovascular function. Circulation. 2004;109(24):2972–5. doi:10.1161/01.cir.0000133311.25587.de.

    Article  PubMed  Google Scholar 

  202. Takagi Y, Nishimura M, Morizane A, Takahashi J, Nozaki K, Hayashi J, et al. Survival and differentiation of neural progenitor cells derived from embryonic stem cells and transplanted into ischemic brain. J Neurosurg. 2005;103(2):304–10. doi:10.3171/jns.2005.103.2.0304.

    Article  PubMed  Google Scholar 

  203. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72. doi:10.1016/j.cell.2007.11.019.

    Article  CAS  PubMed  Google Scholar 

  204. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. doi:10.1016/j.cell.2006.07.024.

    Article  CAS  PubMed  Google Scholar 

  205. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med. 1999;5(4):434–8. doi:10.1038/7434.

    Article  CAS  PubMed  Google Scholar 

  206. Tang YH, Ma YY, Zhang ZJ, Wang YT, Yang GY. Opportunities and challenges: stem cell-based therapy for the treatment of ischemic stroke. CNS Neurosci Ther. 2015;21(4):337–47. doi:10.1111/cns.12386.

    Article  PubMed  Google Scholar 

  207. Taupin P, Gage FH. Adult neurogenesis and neural stem cells of the central nervous system in mammals. J Neurosci Res. 2002;69(6):745–9.

    Article  CAS  PubMed  Google Scholar 

  208. Temple S. Division and differentiation of isolated CNS blast cells in microculture. Nature. 1989;340(6233):471–3.

    Article  CAS  PubMed  Google Scholar 

  209. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    Article  CAS  PubMed  Google Scholar 

  210. Thored P, Arvidsson A, Cacci E, Ahlenius H, Kallur T, Darsalia V, et al. Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells. 2006;24(3):739–47.

    Article  CAS  PubMed  Google Scholar 

  211. Tobita M, Orbay H, Mizuno H. Adipose-derived stem cells: current findings and future perspectives. Discov Med. 2011;11(57):160–70.

    PubMed  Google Scholar 

  212. Tohill M, Mantovani C, Wiberg M, Terenghi G. Rat bone marrow mesenchymal stem cells express glial markers and stimulate nerve regeneration. Neurosci Lett. 2004;362(3):200–3. doi:10.1016/j.neulet.2004.03.077. S0304394004002861 [pii].

    Article  CAS  PubMed  Google Scholar 

  213. Tomasoni S, Longaretti L, Rota C, Morigi M, Conti S, Gotti E, et al. Transfer of growth factor receptor mRNA via exosomes unravels the regenerative effect of mesenchymal stem cells. Stem Cells Dev. 2013;22(5):772–80. doi:10.1089/scd.2012.0266.

    Article  CAS  PubMed  Google Scholar 

  214. Tornero D, Wattananit S, Gronning Madsen M, Koch P, Wood J, Tatarishvili J, et al. Human induced pluripotent stem cell-derived cortical neurons integrate in stroke-injured cortex and improve functional recovery. Brain J Neurol. 2013;136(Pt 12):3561–77. doi:10.1093/brain/awt278.

    Article  Google Scholar 

  215. Turturici G, Tinnirello R, Sconzo G, Geraci F. Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. Am J Physiol Cell Physiol. 2014;306(7):C621–33. doi:10.1152/ajpcell.00228.2013. ajpcell.00228.2013 [pii].

    Article  CAS  PubMed  Google Scholar 

  216. Uccelli A, Laroni A, Freedman MS. Mesenchymal stem cells for the treatment of multiple sclerosis and other neurological diseases. Lancet Neurol. 2011;10(7):649–56. doi:10.1016/S1474-4422(11)70121-1. S1474-4422(11)70121-1 [pii].

    Article  CAS  PubMed  Google Scholar 

  217. Umemura T, Soga J, Hidaka T, Takemoto H, Nakamura S, Jitsuiki D, et al. Aging and hypertension are independent risk factors for reduced number of circulating endothelial progenitor cells. Am J Hypertens. 2008;21(11):1203–9. doi:10.1038/ajh.2008.278.

    Article  CAS  PubMed  Google Scholar 

  218. van der Strate BW, Popa ER, Schipper M, Brouwer LA, Hendriks M, Harmsen MC, et al. Circulating human CD34+ progenitor cells modulate neovascularization and inflammation in a nude mouse model. J Mol Cell Cardiol. 2007;42(6):1086–97. doi:10.1016/j.yjmcc.2007.03.907.

    Article  PubMed  CAS  Google Scholar 

  219. Varga G, Gerber G. Mesenchymal stem cells of dental origin as promising tools for neuroregeneration. Stem Cell Res Ther. 2014;5(2):61. doi:10.1186/scrt450. scrt450 [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  220. Vojtek AB, Taylor J, DeRuiter SL, Yu JY, Figueroa C, Kwok RP, et al. Akt regulates basic helix-loop-helix transcription factor-coactivator complex formation and activity during neuronal differentiation. Mol Cell Biol. 2003;23(13):4417–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Wakabayashi K, Nagai A, Sheikh AM, Shiota Y, Narantuya D, Watanabe T, et al. Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model. J Neurosci Res. 2010;88(5):1017–25. doi:10.1002/jnr.22279.

    CAS  PubMed  Google Scholar 

  222. Wang J, Chao F, Han F, Zhang G, Xi Q, Li J, et al. PET demonstrates functional recovery after transplantation of induced pluripotent stem cells in a rat model of cerebral ischemic injury. J Nucl Med Off Publ Soc Nucl Med. 2013;54(5):785–92. doi:10.2967/jnumed.112.111112.

    CAS  Google Scholar 

  223. Wang J, Hendrix A, Hernot S, Lemaire M, De Bruyne E, Van Valckenborgh E, et al. Bone marrow stromal cell-derived exosomes as communicators in drug resistance in multiple myeloma cells. Blood. 2014;124(4):555–66. doi:10.1182/blood-2014-03-562439. blood-2014-03-562439 [pii].

    Article  CAS  PubMed  Google Scholar 

  224. Wang L, Gang Zhang Z, Lan Zhang R, Chopp M. Activation of the PI3-K/Akt pathway mediates cGMP enhanced-neurogenesis in the adult progenitor cells derived from the subventricular zone. J Cereb Blood Flow Metab. 2005;25(9):1150–8.

    Article  CAS  PubMed  Google Scholar 

  225. Wang L, Zhang Z, Wang Y, Zhang R, Chopp M. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke. 2004;35(7):1732–7.

    Article  CAS  PubMed  Google Scholar 

  226. Wang L, Zhang ZG, Gregg SR, Zhang RL, Jiao Z, LeTourneau Y, et al. The sonic hedgehog pathway mediates carbamylated erythropoietin-enhanced proliferation and differentiation of adult neural progenitor cells. J Biol Chem. 2007;282(44):32462–70.

    Article  CAS  PubMed  Google Scholar 

  227. Wang L, Zhang ZG, Zhang RL, Jiao ZX, Wang Y, Pourabdollah-Nejad DS, et al. Neurogenin 1 mediates erythropoietin enhanced differentiation of adult neural progenitor cells. J Cereb Blood Flow Metab. 2006;26(4):556–64.

    Article  PubMed  CAS  Google Scholar 

  228. Wang X, Yue TL, Barone FC, White RF, Gagnon RC, Feuerstein GZ. Concomitant cortical expression of TNF-alpha and IL-1 beta mRNAs follows early response gene expression in transient focal ischemia. Mol Chem Neuropathol Sponsored Int Soc Neurochem World Fed Neurol Res Group Neurochem Cerebrospinal Fluid. 1994;23(2–3):103–14.

    CAS  Google Scholar 

  229. Warrier S, Haridas N, Bhonde R. Inherent propensity of amnion-derived mesenchymal stem cells towards endothelial lineage: vascularization from an avascular tissue. Placenta. 2012;33(10):850–8. doi:10.1016/j.placenta.2012.07.001. S0143-4004(12)00260-3 [pii].

    Article  CAS  PubMed  Google Scholar 

  230. Wei L, Cui L, Snider BJ, Rivkin M, Yu SS, Lee CS, et al. Transplantation of embryonic stem cells overexpressing Bcl-2 promotes functional recovery after transient cerebral ischemia. Neurobiol Dis. 2005;19(1–2):183–93. doi:10.1016/j.nbd.2004.12.016. S0969-9961(04)00319-5 [pii].

    Article  CAS  PubMed  Google Scholar 

  231. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature. 2007;448(7151):318–24. doi:10.1038/nature05944.

    Article  CAS  PubMed  Google Scholar 

  232. Wislet-Gendebien S, Hans G, Leprince P, Rigo JM, Moonen G, Rogister B. Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. Stem Cells. 2005;23(3):392–402. doi:10.1634/stemcells.2004-0149. doi:23/3/392 [pii].

    Article  CAS  PubMed  Google Scholar 

  233. Xie N, Tang B. The application of human iPSCs in neurological diseases: from bench to bedside. Stem Cells Int. 2016;2016:6484713. doi:10.1155/2016/6484713.

    PubMed  PubMed Central  Google Scholar 

  234. Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang X, et al. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells. 2012;30(7):1556–64. doi:10.1002/stem.1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Xin H, Li Y, Chopp M. Exosomes/miRNAs as mediating cell-based therapy of stroke. Front Cell Neurosci. 2014;8:377. doi:10.3389/fncel.2014.00377.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Xin H, Li Y, Shen LH, Liu X, Wang X, Zhang J, et al. Increasing tPA activity in astrocytes induced by multipotent mesenchymal stromal cells facilitate neurite outgrowth after stroke in the mouse. PLoS ONE. 2010;5(2), e9027. doi:10.1371/journal.pone.0009027.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol. 2001;19(10):971–4. doi:10.1038/nbt1001-971. nbt1001-971 [pii].

    Article  CAS  PubMed  Google Scholar 

  238. Yamashita T, Abe K. Mechanisms of endogenous endothelial repair in stroke. Curr Pharm Des. 2012;18(25):3649–52.

    Article  CAS  PubMed  Google Scholar 

  239. Yamashita T, Kawai H, Tian F, Ohta Y, Abe K. Tumorigenic development of induced pluripotent stem cells in ischemic mouse brain. Cell Transplant. 2011;20(6):883–91. doi:10.3727/096368910x539092.

    Article  PubMed  Google Scholar 

  240. Yanagisawa D, Qi M, Kim DH, Kitamura Y, Inden M, Tsuchiya D, et al. Improvement of focal ischemia-induced rat dopaminergic dysfunction by striatal transplantation of mouse embryonic stem cells. Neurosci Lett. 2006;407(1):74–9. doi:10.1016/j.neulet.2006.08.007. S0304-3940(06)00799-3 [pii].

    Article  CAS  PubMed  Google Scholar 

  241. Yang JM, Gould SJ. The cis-acting signals that target proteins to exosomes and microvesicles. Biochem Soc Trans. 2013;41(1):277–82. doi:10.1042/BST20120275. BST20120275 [pii].

    Article  CAS  PubMed  Google Scholar 

  242. Yarygin KN, Kholodenko IV, Konieva AA, Burunova VV, Tairova RT, Gubsky LV, et al. Mechanisms of positive effects of transplantation of human placental mesenchymal stem cells on recovery of rats after experimental ischemic stroke. Bull Exp Biol Med. 2009;148(6):862–8.

    Article  CAS  PubMed  Google Scholar 

  243. Ying QL, Stavridis M, Griffiths D, Li M, Smith A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol. 2003;21(2):183–6. doi:10.1038/nbt780. nbt780 [pii].

    Article  CAS  PubMed  Google Scholar 

  244. Yip HK, Chang LT, Chang WN, Lu CH, Liou CW, Lan MY, et al. Level and value of circulating endothelial progenitor cells in patients after acute ischemic stroke. Stroke J Cereb Circ. 2008;39(1):69–74. doi:10.1161/strokeaha.107.489401.

    Article  Google Scholar 

  245. Yoo KH, Jang IK, Lee MW, Kim HE, Yang MS, Eom Y, et al. Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cell Immunol. 2009;259(2):150–6. doi:10.1016/j.cellimm.2009.06.010. S0008-8749(09)00115-4 [pii].

    Article  CAS  PubMed  Google Scholar 

  246. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science (New York, NY). 2007;318(5858):1917–20. doi:10.1126/science.1151526.

    Article  CAS  Google Scholar 

  247. Yu JX, Huang XF, Lv WM, Ye CS, Peng XZ, Zhang H, et al. Combination of stromal-derived factor-1alpha and vascular endothelial growth factor gene-modified endothelial progenitor cells is more effective for ischemic neovascularization. J Vasc Surg. 2009;50(3):608–16. doi:10.1016/j.jvs.2009.05.049.

    Article  PubMed  Google Scholar 

  248. Yuan T, Liao W, Feng NH, Lou YL, Niu X, Zhang AJ, et al. Human induced pluripotent stem cell-derived neural stem cells survive, migrate, differentiate, and improve neurologic function in a rat model of middle cerebral artery occlusion. Stem Cell Res Ther. 2013;4(3):73. doi:10.1186/scrt224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Zhang H, Song F, Xu C, Liu H, Wang Z, Li J, et al. Spatiotemporal PET imaging of dynamic metabolic changes after therapeutic approaches of induced pluripotent stem cells, neuronal stem cells, and a Chinese patent medicine in stroke. J Nucl Med Off Publ Soc Nucl Med. 2015;56(11):1774–9. doi:10.2967/jnumed.115.163170.

    CAS  Google Scholar 

  250. Zhang HG, Grizzle WE. Exosomes: a novel pathway of local and distant intercellular communication that facilitates the growth and metastasis of neoplastic lesions. Am J Pathol. 2014;184(1):28–41. doi:10.1016/j.ajpath.2013.09.027. S0002-9440(13)00738-4 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Zhang HT, Liu ZL, Yao XQ, Yang ZJ, Xu RX. Neural differentiation ability of mesenchymal stromal cells from bone marrow and adipose tissue: a comparative study. Cytotherapy. 2012;14(10):1203–14. doi:10.3109/14653249.2012.711470.

    Article  CAS  PubMed  Google Scholar 

  252. Zhang J, Li Y, Chen J, Yang M, Katakowski M, Lu M, et al. Expression of insulin-like growth factor 1 and receptor in ischemic rats treated with human marrow stromal cells. Brain Res. 2004;1030(1):19–27. doi:10.1016/j.brainres.2004.09.061. S0006-8993(04)01571-9 [pii].

    Article  CAS  PubMed  Google Scholar 

  253. Zhang R, Zhang Z, Tsang W, Wang L, Chopp M. Down-regulation of p27kip1 increases proliferation of progenitor cells in adult rats. Neuroreport. 2004;15(11):1797–800.

    Article  CAS  PubMed  Google Scholar 

  254. Zhang R, Zhang Z, Wang L, Wang Y, Gousev A, Zhang L, et al. Activated neural stem cells contribute to stroke-induced neurogenesis and neuroblast migration toward the infarct boundary in adult rats. J Cereb Blood Flow Metab. 2004;24(4):441–8.

    Article  PubMed  Google Scholar 

  255. Zhang RL, Zhang ZG, Chopp M. Ischemic stroke and neurogenesis in the subventricular zone. Neuropharmacology. 2008;55(3):345–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Zhang RL, Zhang ZG, Roberts C, LeTourneau Y, Lu M, Zhang L, et al. Lengthening the G(1) phase of neural progenitor cells is concurrent with an increase of symmetric neuron generating division after stroke. J Cereb Blood Flow Metab. 2008;28(3):602–11.

    Article  PubMed  Google Scholar 

  257. Zhang RL, Zhang ZG, Zhang L, Chopp M. Proliferation and differentiation of progenitor cells in the cortex and the subventricular zone in the adult rat after focal cerebral ischemia. Neuroscience. 2001;105(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  258. Zhang SC, Wernig M, Duncan ID, Brustle O, Thomson JA. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol. 2001;19(12):1129–33. doi:10.1038/nbt1201-1129. nbt1201-1129 [pii].

    Article  CAS  PubMed  Google Scholar 

  259. Zhang ZG, Zhang L, Jiang Q, Chopp M. Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ Res. 2002;90(3):284–8.

    Article  CAS  PubMed  Google Scholar 

  260. Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol. 2002;174(1):11–20. doi:10.1006/exnr.2001.7853. S0014488601978537 [pii].

    Article  PubMed  Google Scholar 

  261. Zhao YH, Yuan B, Chen J, Feng DH, Zhao B, Qin C, et al. Endothelial progenitor cells: therapeutic perspective for ischemic stroke. CNS Neurosci Ther. 2013;19(2):67–75. doi:10.1111/cns.12040.

    Article  PubMed  CAS  Google Scholar 

  262. Zhou T, Benda C, Dunzinger S, Huang Y, Ho JC, Yang J, et al. Generation of human induced pluripotent stem cells from urine samples. Nat Protoc. 2012;7(12):2080–9. doi:10.1038/nprot.2012.115.

    Article  CAS  PubMed  Google Scholar 

  263. Zhu Y, Wan S, Zhan RY. Inducible pluripotent stem cells for the treatment of ischemic stroke: current status and problems. Rev Neurosci. 2012;23(4):393–402. doi:10.1515/revneuro-2012-0042.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xunming Ji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ren, C., Han, R., Shi, J., Ji, X. (2017). Ischemic Stroke Pathophysiology and Cell Therapy. In: Jin, K., Ji, X., Zhuge, Q. (eds) Bone marrow stem cell therapy for stroke. Springer, Singapore. https://doi.org/10.1007/978-981-10-2929-5_1

Download citation

Publish with us

Policies and ethics