Advertisement

Graphene Electrocatalysts for Fiber Dye-Sensitized Solar Cells

Chapter
  • 561 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, I will try to explain how to reasonably design a functional fiber electrode and systematically demonstrate a series of graphene-based fiber counter electrodes, including electrocatalysts, conducting additives as well as fiber substrates.

Keywords

Graphene Oxide Oxygen Reduction Reaction Reduce Graphene Oxide Power Conversion Efficiency Photovoltaic Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Oregan B, Gratzel M (1991) A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740. doi: 10.1038/353737a0 CrossRefGoogle Scholar
  2. 2.
    Yella A, Lee HW, Tsao HN, Yi CY, Chandiran AK, Nazeeruddin MK, Diau EWG, Yeh CY, Zakeeruddin SM, Gratzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334(6056):629–634. doi: 10.1126/science.1209688 CrossRefGoogle Scholar
  3. 3.
    Tsao HN, Burschka J, Yi CY, Kessler F, Nazeeruddin MK, Gratzel M (2011) Influence of the interfacial charge-transfer resistance at the counter electrode in dye-sensitized solar cells employing cobalt redox shuttles. Energ Environ Sci 4(12):4921–4924. doi: 10.1039/C1ee02389f CrossRefGoogle Scholar
  4. 4.
    Hou S, Lv Z, Wu H, Cai X, Chu Z, Yiliguma Zou D (2012) Flexible conductive threads for wearable dye-sensitized solar cells. J Mater Chem 22(14):6549–6552. doi: 10.1039/c2jm16773e CrossRefGoogle Scholar
  5. 5.
    Murakami TN, Ito S, Wang Q, Nazeeruddin MK, Bessho T, Cesar I, Liska P, Humphry-Baker R, Comte P, Pechy P, Gratzel M (2006) Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J Electrochem Soc 153(12):A2255–A2261. doi: 10.1149/1.2358087 CrossRefGoogle Scholar
  6. 6.
    Trancik JE, Barton SC, Hone J (2008) Transparent and catalytic carbon nanotube films. Nano Lett 8(4):982–987. doi: 10.1021/nl071945i CrossRefGoogle Scholar
  7. 7.
    Suzuki K, Yamaguchi M, Kumagai M, Yanagida S (2003) Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells. Chem Lett 32(1):28–29. doi: 10.1246/cl.2003.28 CrossRefGoogle Scholar
  8. 8.
    Cai X, Lv Z, Wu H, Hou S, Zou D (2012) Direct application of commercial fountain pen ink to efficient dye-sensitized solar cells. J Mater Chem 22(19):9639–9644. doi: 10.1039/c2jm16265b CrossRefGoogle Scholar
  9. 9.
    Papageorgiou N (2004) Counter-electrode function in nanocrystalline photoelectrochemical cell configurations. Coord Chem Rev 248(13–14):1421–1446. doi: 10.1016/j.ccr.2004.03.028 CrossRefGoogle Scholar
  10. 10.
    Xu Y, Bai H, Lu G, Li C, Shi G (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130(18):5856–5857. doi: 10.1021/ja800745y CrossRefGoogle Scholar
  11. 11.
    Wang H, Hu YH (2012) Graphene as a counter electrode material for dye-sensitized solar cells. Energ Environ Sci 5(8):8182–8188. doi: 10.1039/c2ee21905k CrossRefGoogle Scholar
  12. 12.
    Roy-Mayhew JD, Bozym DJ, Punckt C, Aksay IA (2010) Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano 4(10):6203–6211. doi: 10.1021/Nn1016428 CrossRefGoogle Scholar
  13. 13.
    Roy-Mayhew JD, Boschloo G, Hagfeldt A, Aksay IA (2012) Functionalized graphene sheets as a versatile replacement for platinum in dye-sensitized solar cells. ACS Appl Mater Interfaces 4(5):2794–2800. doi: 10.1021/am300451b CrossRefGoogle Scholar
  14. 14.
    Kavan L, Yum JH, Nazeeruddin MK, Gratzel M (2011) Graphene nanoplatelet cathode for Co(III)/(II) mediated dye-sensitized solar cells. ACS Nano 5(11):9171–9178. doi: 10.1021/Nn203416d CrossRefGoogle Scholar
  15. 15.
    Xu X, Huang D, Cao K, Wang M, Zakeeruddin SM, Graetzel M (2013) Electrochemically reduced graphene oxide multilayer films as efficient counter electrode for dye-sensitized solar cells. Sci Rep 3. doi: 10.1038/srep01489
  16. 16.
    Wang HB, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2(5):781–794. doi: 10.1021/Cs200652y CrossRefGoogle Scholar
  17. 17.
    Xue Y, Liu J, Chen H, Wang R, Li D, Qu J, Dai L (2012) Nitrogen-doped graphene foams as metal-free counter electrodes in high-performance dye-sensitized solar cells. Angew Chem Int Edit 51(48):12124–12127. doi: 10.1002/anie.201207277 CrossRefGoogle Scholar
  18. 18.
    Ju MJ, Kim JC, Choi HJ, Choi IT, Kim SG, Lim K, Ko J, Lee JJ, Jeon IY, Baek JB, Kim HK (2013) N-doped graphene nanoplatelets as superior metal-free counter electrodes for organic dye-sensitized solar cells. ACS Nano 7(6):5243–5250. doi: 10.1021/Nn4009774 CrossRefGoogle Scholar
  19. 19.
    Yen MY, Hsieh CK, Teng CC, Hsiao MC, Liu PI, Ma CCM, Tsai MC, Tsai CH, Lin YR, Chou TY (2012) Metal-free, nitrogen-doped graphene used as a novel catalyst for dye-sensitized solar cell counter electrodes. RSC Adv 2(7):2725–2728. doi: 10.1039/C2ra00970f CrossRefGoogle Scholar
  20. 20.
    Hou SC, Cai X, Wu HW, Yu X, Peng M, Yan K, Zou DC (2013) Nitrogen-doped graphene for dye-sensitized solar cells and the role of nitrogen states in triiodide reduction. Energ Environ Sci 6(11):3356–3362. doi: 10.1039/c3ee42516a CrossRefGoogle Scholar
  21. 21.
    Sun J, Li Y, Peng Q, Hou S, Zou D, Shang Y, Li Y, Li P, Du Q, Wang Z, Xia Y, Xia L, Li X, Cao A (2013) Macroscopic, flexible, high-performance graphene ribbons. ACS Nano 7(11):10225–10232. doi: 10.1021/nn404533r CrossRefGoogle Scholar
  22. 22.
    Wen Z, Cui S, Pu H, Mao S, Yu K, Feng X, Chen J (2011) Metal nitride/graphene nanohybrids: general synthesis and multifunctional titanium nitride/graphene electrocatalyst. Adv Mater 23(45):5445–+. doi: 10.1002/adma.201102772
  23. 23.
    Wen Z, Wang X, Mao S, Bo Z, Kim H, Cui S, Lu G, Feng X, Chen J (2012) Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor. Adv Mater 24(41):5610–5616. doi: 10.1002/adma.201201920 CrossRefGoogle Scholar
  24. 24.
    Parvez K, Yang S, Hernandez Y, Winter A, Turchanin A, Feng X, Muellen K (2012) Nitrogen-doped graphene and its iron-based composite as efficient electrocatalysts for oxygen reduction reaction. ACS Nano 6(11):9541–9550. doi: 10.1021/nn302674k CrossRefGoogle Scholar
  25. 25.
    Das S, Sudhagar P, Verma V, Song D, Ito E, Lee SY, Kang YS, Choi W (2011) Amplifying charge-transfer characteristics of graphene for triiodide reduction in dye-sensitized solar cells. Adv Funct Mater 21(19):3729–3736. doi: 10.1002/adfm.201101191 CrossRefGoogle Scholar
  26. 26.
    Tantang H, Kyaw AKK, Zhao Y, Chan-Park MB, Tok AIY, Hu Z, Li LJ, Sun XW, Zhang QC (2012) Nitrogen-doped carbon nanotube-based bilayer thin film as transparent counter electrode for dye-sensitized solar cells (DSSCs). Chem-Asian J 7(3):541–545. doi: 10.1002/asia.201100670 CrossRefGoogle Scholar
  27. 27.
    Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2(5):781–794. doi: 10.1021/cs200652y CrossRefGoogle Scholar
  28. 28.
    Wang GQ, Fang YY, Lin Y, Xing W, Zhuo SP (2012) Nitrogen-doped graphene as transparent counter electrode for efficient dye-sensitized solar cells. Mater Res Bull 47(12):4252–4256. doi: 10.1016/j.materresbull.2012.09.023 CrossRefGoogle Scholar
  29. 29.
    Wang GQ, Xing W, Zhuo SP (2013) Nitrogen-doped graphene as low-cost counter electrode for high-efficiency dye-sensitized solar cells. Electrochim Acta 92:269–275. doi: 10.1016/j.electacta.2013.01.034 CrossRefGoogle Scholar
  30. 30.
    Xue YH, Liu J, Chen H, Wang RG, Li DQ, Qu J, Dai LM (2012) Nitrogen-doped graphene foams as metal-free counter electrodes in high-performance dye-sensitized solar cells. Angew Chem Int Edit 51(48):12124–12127. doi: 10.1002/anie.201207277 CrossRefGoogle Scholar
  31. 31.
    Zhang X, Pang S, Chen X, Zhang K, Liu Z, Zhou X, Cui G (2013) An insight into the effect of nitrogen doping on the performance of a reduced graphene oxide counter electrode for dye-sensitized solar cells. RSC Advances 3(23):9005–9010. doi: 10.1039/c3ra40847g CrossRefGoogle Scholar
  32. 32.
    Zhang XY, Pang SP, Chen X, Zhang KJ, Liu ZH, Zhou XH, Cui GL (2013) An insight into the effect of nitrogen doping on the performance of a reduced graphene oxide counter electrode for dye-sensitized solar cells. RSC Adv 3(23):9005–9010. doi: 10.1039/C3ra40847g CrossRefGoogle Scholar
  33. 33.
    Sheng ZH, Shao L, Chen JJ, Bao WJ, Wang FB, Xia XH (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5(6):4350–4358. doi: 10.1021/Nn103584t CrossRefGoogle Scholar
  34. 34.
    Sharifi T, Hu G, Jia X, Wagberg T (2012) Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes. ACS Nano 6(10):8904–8912. doi: 10.1021/nn302906r CrossRefGoogle Scholar
  35. 35.
    Kumar A, Ganguly A, Papakonstantinou P (2012) Thermal stability study of nitrogen functionalities in a graphene network. J Phys-Condens Mat 24(23). doi: 10.1088/0953-8984/24/23/235503
  36. 36.
    Lai LF, Potts JR, Zhan D, Wang L, Poh CK, Tang CH, Gong H, Shen ZX, Jianyi LY, Ruoff RS (2012) Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ Sci 5(7):7936–7942. doi: 10.1039/C2ee21802j CrossRefGoogle Scholar
  37. 37.
    Soin N, Roy SS, Roy S, Hazra KS, Misra DS, Lim TH, Hetherington CJ, McLaughlin JA (2011) Enhanced and stable field emission from in situ nitrogen-doped few-layered graphene nanoflakes. J Phys Chem C 115(13):5366–5372. doi: 10.1021/jp110476m CrossRefGoogle Scholar
  38. 38.
    Lai L, Potts JR, Zhan D, Wang L, Poh CK, Tang C, Gong H, Shen Z, Lin J, Ruoff RS (2012) Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ Sci 5(7):7936–7942. doi: 10.1039/c2ee21802j CrossRefGoogle Scholar
  39. 39.
    Hwang JO, Park JS, Choi DS, Kim JY, Lee SH, Lee KE, Kim YH, Song MH, Yoo S, Kim SO (2012) Workfunction-tunable, N-doped reduced graphene transparent electrodes for high-performance polymer light-emitting diodes. ACS Nano 6(1):159–167. doi: 10.1021/Nn203176u CrossRefGoogle Scholar
  40. 40.
    Ni S, Li ZY, Yang JL (2012) Oxygen molecule dissociation on carbon nanostructures with different types of nitrogen doping. Nanoscale 4(4):1184–1189. doi: 10.1039/C1nr11086a CrossRefGoogle Scholar
  41. 41.
    Jeong HM, Lee JW, Shin WH, Choi YJ, Shin HJ, Kang JK, Choi JW (2011) Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett 11(6):2472–2477. doi: 10.1021/Nl2009058 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Polymer Science and Engineering, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina

Personalised recommendations