Overview of Solar Photovoltaic Technology

Part of the Springer Theses book series (Springer Theses)


In this chapter, I will overview the common solar photovoltaic technologies and focus on dye-sensitized solar cells and their challenges. As one of main streams of photovoltaic technologies, flexible photovotaics, usually in planar configuration, were reviewed. Then, I will in-detailed summary the development of the emerging fiber solar cells, which is a promising way to realize flexible/wearable photovoltaics. Last, the scope of this thesis is briefly introduced.


Solar Cell Mesoporous TiO2 Perovskite Solar Cell Solar Photovoltaic Cell Photovoltaic Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Docampo P, Guldin S, Leijtens T, Noel NK, Steiner U, Snaith HJ (2014) Lessons learned: from dye-sensitized solar cells to all-solid-state hybrid devices. Adv Mater 26(24):4013–4030. doi: 10.1002/adma.201400486 CrossRefGoogle Scholar
  2. 2.
    Oregan B, Gratzel M (1991) A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740. doi: 10.1038/353737a0 CrossRefGoogle Scholar
  3. 3.
    Nazeeruddin MK, Kay A, Rodicio I, Humphrybaker R, Muller E, Liska P, Vlachopoulos N, Gratzel M (1993) Conversion of Light to Electricity by Cis-X2bis(2,2′-Bipyridyl-4,4′-Dicarboxylate)Ruthenium(Ii) Charge-Transfer Sensitizers (X=Cl-, Br-, I-, Cn-, and Scn-) on Nanocrystalline TiO2 Electrodes. J Am Chem Soc 115(14):6382–6390. doi: 10.1021/Ja00067a063 CrossRefGoogle Scholar
  4. 4.
    Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-Sensitized solar cells. Chem Rev 110(11):6595–6663. doi: 10.1021/cr900356p CrossRefGoogle Scholar
  5. 5.
    Halme J, Vahermaa P, Miettunen K, Lund P (2010) Device physics of dye solar cells. Adv Mater 22(35):E210–E234. doi: 10.1002/adma.201000726 CrossRefGoogle Scholar
  6. 6.
    Kamat PV, Tvrdy K, Baker DR, Radich JG (2010) Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. Chem Rev 110(11):6664–6688. doi: 10.1021/Cr100243p CrossRefGoogle Scholar
  7. 7.
    Ahmad S, Guillen E, Kavan L, Gratzel M, Nazeeruddin MK (2013) Metal free sensitizer and catalyst for dye sensitized solar cells. Energ Environ Sci 6(12):3439–3466. doi: 10.1039/C3ee41888j CrossRefGoogle Scholar
  8. 8.
    Snaith HJ, Schmidt-Mende L (2007) Advances in liquid-electrolyte and solid-state dye-sensitized solar cells. Adv Mater 19(20):3187–3200. doi: 10.1002/adma.200602903 CrossRefGoogle Scholar
  9. 9.
    Hao F, Dong P, Luo Q, Li JB, Lou J, Lin H (2013) Recent advances in alternative cathode materials for iodine-free dye-sensitized solar cells. Energ Environ Sci 6(7):2003–2019. doi: 10.1039/C3ee40296g CrossRefGoogle Scholar
  10. 10.
    Snaith HJ (2010) Estimating the maximum attainable efficiency in dye-sensitized solar cells. Adv Funct Mater 20(1):13–19. doi: 10.1002/adfm.200901476 CrossRefGoogle Scholar
  11. 11.
    Yu M, Long YZ, Sun B, Fan ZY (2012) Recent advances in solar cells based on one-dimensional nanostructure arrays. Nanoscale 4(9):2783–2796. doi: 10.1039/C2nr30437f CrossRefGoogle Scholar
  12. 12.
    Yu QJ, Wang YH, Yi ZH, Zu NN, Zhang J, Zhang M, Wang P (2010) High-efficiency dye-sensitized solar cells: the influence of lithium ions on exciton dissociation, charge recombination, and surface states. ACS Nano 4(10):6032–6038. doi: 10.1021/Nn101384e CrossRefGoogle Scholar
  13. 13.
    Zhang M, Wang YL, Xu MF, Ma WT, Li RZ, Wang P (2013) Design of high-efficiency organic dyes for titania solar cells based on the chromophoric core of cyclopentadithiophene-benzothiadiazole. Energ Environ Sci 6(10):2944–2949. doi: 10.1039/C3ee42331j CrossRefGoogle Scholar
  14. 14.
    Yella A, Lee HW, Tsao HN, Yi CY, Chandiran AK, Nazeeruddin MK, Diau EWG, Yeh CY, Zakeeruddin SM, Gratzel M (2011) Porphyrin-sensitized solar cells with Cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334(6056):629–634. doi: 10.1126/science.1209688 CrossRefGoogle Scholar
  15. 15.
    Simon Mathew AY, Gao Peng, Humphry-Baker Robin, Curchod Basile F E, Ashari-Astani Negar, Tavernelli Ivano, Ursula Rothlisberger Md, Nazeeruddin Khaja, Grätzel Michael (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6:242–247. doi: 10.1038/nchem.186110.1038/NCHEM.1861 CrossRefGoogle Scholar
  16. 16.
    Wang J, Mora-Sero I, Pan ZX, Zhao K, Zhang H, Feng YY, Yang G, Zhong XH, Bisquert J (2013) Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells. J Am Chem Soc 135(42):15913–15922. doi: 10.1021/Ja4079804 CrossRefGoogle Scholar
  17. 17.
    Pazos-Outon LM, Szumilo M, Lamboll R, Richter JM, Crespo-Quesada M, Abdi-Jalebi M, Beeson HJ, Vrucinic M, Alsari M, Snaith HJ, Ehrler B, Friend RH, Deschler F (2016) Photon recycling in lead iodide perovskite solar cells. Science 351(6280):1430–1433. doi: 10.1126/science.aaf1168 CrossRefGoogle Scholar
  18. 18.
    Lv MQ, Zheng DJ, Ye MD, Xiao J, Guo WX, Lai YK, Sun L, Lin CJ, Zuo J (2013) Optimized porous rutile TiO2 nanorod arrays for enhancing the efficiency of dye-sensitized solar cells. Energ Environ Sci 6(5):1615–1622. doi: 10.1039/C3ee24125d CrossRefGoogle Scholar
  19. 19.
    Lin CJ, Yu WY, Chien SH (2010) Transparent electrodes of ordered opened-end TiO2-nanotube arrays for highly efficient dye-sensitized solar cells. J Mater Chem 20(6):1073–1077. doi: 10.1039/B917886d CrossRefGoogle Scholar
  20. 20.
    Memarian N, Concina I, Braga A, Rozati SM, Vomiero A, Sberveglieri G (2011) Hierarchically assembled ZnO nanocrystallites for high-efficiency dye-sensitized solar cells. Angew Chem Int Edit 50(51):12321–12325. doi: 10.1002/anie.201104605 CrossRefGoogle Scholar
  21. 21.
    Wang YF, Li KN, Liang CL, Hou YF, Su CY, Kuang DB (2012) Synthesis of hierarchical SnO2 octahedra with tailorable size and application in dye-sensitized solar cells with enhanced power conversion efficiency. J Mater Chem 22(40):21495–21501. doi: 10.1039/C2jm33633b CrossRefGoogle Scholar
  22. 22.
    Wang YF, Li KN, Xu YF, Rao HS, Su CY, Kuang DB (2013) Hydrothermal fabrication of hierarchically macroporous Zn2SnO4 for highly efficient dye-sensitized solar cells. Nanoscale 5(13):5940–5948. doi: 10.1039/C3nr01133j CrossRefGoogle Scholar
  23. 23.
    Feldt SM, Gibson EA, Gabrielsson E, Sun L, Boschloo G, Hagfeldt A (2010) Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells. J Am Chem Soc 132(46):16714–16724. doi: 10.1021/Ja1088869 CrossRefGoogle Scholar
  24. 24.
    Rosenbluth ML, Lewis NS (1989) Ideal behavior of the open circuit voltage of semiconductor liquid junctions. J Phys Chem 93(9):3735–3740. doi: 10.1021/J100346a072 CrossRefGoogle Scholar
  25. 25.
    Boschloo G, Haggman L, Hagfeldt A (2006) Quantification of the effect of 4-tert-butylpyridine addition to I-/I-3(-) redox electrolytes in dye-sensitized nanostructured TiO2 solar cells. J Phys Chem B 110(26):13144–13150. doi: 10.1021/Jp0619641 CrossRefGoogle Scholar
  26. 26.
    Peter LM (2007) Dye-sensitized nanocrystalline solar cells. PCCP 9(21):2630–2642. doi: 10.1039/B617073k CrossRefGoogle Scholar
  27. 27.
    Burschka J, Brault V, Ahmad S, Breau L, Nazeeruddin MK, Marsan B, Zakeeruddin SM, Gratzel M (2012) Influence of the counter electrode on the photovoltaic performance of dye-sensitized solar cells using a disulfide/thiolate redox electrolyte. Energ Environ Sci 5(3):6089–6097. doi: 10.1039/C2ee03005e CrossRefGoogle Scholar
  28. 28.
    Daeneke T, Kwon TH, Holmes AB, Duffy NW, Bach U, Spiccia L (2011) High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes. Nat Chem 3(3):211–215. doi: 10.1038/Nchem.966 CrossRefGoogle Scholar
  29. 29.
    Bai Y, Cao YM, Zhang J, Wang M, Li RZ, Wang P, Zakeeruddin SM, Gratzel M (2008) High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts. Nat Mater 7(8):626–630. doi: 10.1038/Nmat2224 CrossRefGoogle Scholar
  30. 30.
    Yang HS, Ilperuma OA, Shimomura M, Murakami K (2009) Effect of ultra-thin polymer membrane electrolytes on dye-sensitized solar cells. Sol Energy Mater Sol Cells 93(6–7):1083–1086. doi: 10.1016/j.solmat.2008.12.019 CrossRefGoogle Scholar
  31. 31.
    Roh DK, Chi WS, Jeon H, Kim SJ, Kim JH (2014) High efficiency solid-state dye-sensitized solar cells assembled with hierarchical anatase pine tree-like TiO2 nanotubes. Adv Funct Mater 24(3):379–386. doi: 10.1002/adfm.201301562 CrossRefGoogle Scholar
  32. 32.
    Kim J, Koh JK, Kim B, Kim JH, Kim E (2012) Nanopatterning of mesoporous inorganic oxide films for efficient light harvesting of dye-sensitized solar cells. Angew Chem Int Edit 51(28):6864–6869. doi: 10.1002/anie.201202428 CrossRefGoogle Scholar
  33. 33.
    Cai N, Moon SJ, Cevey-Ha L, Moehl T, Humphry-Baker R, Wang P, Zakeeruddin SM, Gratzel M (2011) An organic D-pi-A dye for record efficiency solid-state sensitized heterojunction solar cells. Nano Lett 11(4):1452–1456. doi: 10.1021/Nl104034e CrossRefGoogle Scholar
  34. 34.
    Burschka J, Dualeh A, Kessler F, Baranoff E, Cevey-Ha NL, Yi CY, Nazeeruddin MK, Gratzel M (2011) Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-Type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. J Am Chem Soc 133(45):18042–18045. doi: 10.1021/Ja207367t CrossRefGoogle Scholar
  35. 35.
    Sakamoto H, Igarashi S, Uchida M, Niume K, Nagai M (2012) Highly efficient all solid state dye-sensitized solar cells by the specific interaction of CuI with NCS groups II. Enhancement of the photovoltaic characteristics. Org Electron 13(3):514–518. doi: 10.1016/j.orgel.2011.11.017
  36. 36.
    Snaith HJ (2013) Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J Phys Chem Lett 4(21):3623–3630. doi: 10.1021/jz4020162 CrossRefGoogle Scholar
  37. 37.
    Wu MX, Lin X, Wang TH, Qiu JS, Ma TL (2011) Low-cost dye-sensitized solar cell based on nine kinds of carbon counter electrodes. Energ Environ Sci 4(6):2308–2315. doi: 10.1039/C1ee01059j CrossRefGoogle Scholar
  38. 38.
    Joshi P, Zhang LF, Chen QL, Galipeau D, Fong H, Qiao QQ (2010) Electrospun carbon nanofibers as low-cost counter electrode for dye-sensitized solar cells. Acs Appl Mater Interfaces 2(12):3572–3577. doi: 10.1021/Am100742s CrossRefGoogle Scholar
  39. 39.
    Nam JG, Park YJ, Kim BS, Lee JS (2010) Enhancement of the efficiency of dye-sensitized solar cell by utilizing carbon nanotube counter electrode. Scripta Mater 62(3):148–150. doi: 10.1016/j.scriptamat.2009.10.008 CrossRefGoogle Scholar
  40. 40.
    Roy-Mayhew JD, Bozym DJ, Punckt C, Aksay IA (2010) Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano 4(10):6203–6211. doi: 10.1021/Nn1016428 CrossRefGoogle Scholar
  41. 41.
    Jiang QW, Li GR, Liu S, Gao XP (2010) Surface-nitrided nickel with bifunctional structure as low-cost counter electrode for dye-sensitized solar cells. J Phys Chem C 114(31):13397–13401. doi: 10.1021/Jp1035184 CrossRefGoogle Scholar
  42. 42.
    Sun HC, Qin D, Huang SQ, Guo XZ, Li DM, Luo YH, Meng QB (2011) Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique. Energ Environ Sci 4(8):2630–2637. doi: 10.1039/C0ee00791a CrossRefGoogle Scholar
  43. 43.
    Wu MX, Lin XA, Hagfeldt A, Ma TL (2011) A novel catalyst of WO2 nanorod for the counter electrode of dye-sensitized solar cells. Chem Commun 47(15):4535–4537. doi: 10.1039/C1cc10638d CrossRefGoogle Scholar
  44. 44.
    Tai QD, Chen BL, Guo F, Xu S, Hu H, Sebo B, Zhao XZ (2011) In situ prepared transparent polyaniline electrode and its application in bifacial dye-sensitized solar cells. ACS Nano 5(5):3795–3799. doi: 10.1021/Nn200133g CrossRefGoogle Scholar
  45. 45.
    Xia JB, Chen L, Yanagida S (2011) Application of polypyrrole as a counter electrode for a dye-sensitized solar cell. J Mater Chem 21(12):4644–4649. doi: 10.1039/C0jm04116e CrossRefGoogle Scholar
  46. 46.
    Pringle JM, Armel V, MacFarlane DR (2010) Electrodeposited PEDOT-on-plastic cathodes for dye-sensitized solar cells. Chem Commun 46(29):5367–5369. doi: 10.1039/C0cc01400a CrossRefGoogle Scholar
  47. 47.
    Xia JB, Masaki N, Jiang KJ, Yanagida S (2007) The influence of doping ions on poly(3,4-ethylenedioxythiophene) as a counter electrode of a dye-sensitized solar cell. J Mater Chem 17(27):2845–2850. doi: 10.1039/B703062b CrossRefGoogle Scholar
  48. 48.
    Ramasamy E, Lee WJ, Lee DY, Song JS (2007) Nanocarbon counterelectrode for dye sensitized solar cells. Appl Phys Lett 90(17):173103. doi: 10.1063/1.2731495
  49. 49.
    Fan SQ, Fang B, Kim JH, Jeong B, Kim C, Yu JS, Ko J (2010) Ordered multimodal porous carbon as highly efficient counter electrodes in dye-sensitized and quantum-dot solar cells. Langmuir 26(16):13644–13649. doi: 10.1021/La1019873 CrossRefGoogle Scholar
  50. 50.
    Zhang J, Li XX, Guo W, Hreid T, Hou JF, Su HQ, Yuan ZB (2011) Electropolymerization of a poly(3,4-ethylenedioxythiophene) and functionalized, multi-walled, carbon nanotubes counter electrode for dye-sensitized solar cells and characterization of its performance. Electrochim Acta 56(9):3147–3152. doi: 10.1016/j.electacta.2011.01.063 CrossRefGoogle Scholar
  51. 51.
    Sudhagar P, Nagarajan S, Lee YG, Song D, Son T, Cho W, Heo M, Lee K, Won J, Kang YS (2011) Synergistic catalytic effect of a composite (CoS/PEDOT:PSS) counter electrode on triiodide reduction in dye-sensitized solar cells. Acs Appl Mater Interfaces 3(6):1838–1843. doi: 10.1021/Am2003735 CrossRefGoogle Scholar
  52. 52.
    Li GR, Wang F, Jiang QW, Gao XP, Shen PW (2010) Carbon nanotubes with titanium nitride as a low-cost counter-electrode material for dye-sensitized solar cells. Angew Chem Int Edit 49(21):3653–3656. doi: 10.1002/anie.201000659 CrossRefGoogle Scholar
  53. 53.
    Jiang QW, Li GR, Gao XP (2009) Highly ordered TiN nanotube arrays as counter electrodes for dye-sensitized solar cells. Chem Commun 44:6720. doi: 10.1039/b912776c CrossRefGoogle Scholar
  54. 54.
    Kavan L, Yum JH, Nazeeruddin MK, Gratzel M (2011) Graphene nanoplatelet cathode for Co(III)/(II) mediated dye-sensitized solar cells. ACS Nano 5(11):9171–9178. doi: 10.1021/Nn203416d CrossRefGoogle Scholar
  55. 55.
    Wu MX, Lin XA, Hagfeldt A, Ma TL (2011) Low-cost molybdenum carbide and tungsten carbide counter electrodes for dye-sensitized solar cells. Angew Chem Int Edit 50(15):3520–3524. doi: 10.1002/anie.201006635 CrossRefGoogle Scholar
  56. 56.
    Tsao HN, Burschka J, Yi CY, Kessler F, Nazeeruddin MK, Gratzel M (2011) Influence of the interfacial charge-transfer resistance at the counter electrode in dye-sensitized solar cells employing cobalt redox shuttles. Energ Environ Sci 4(12):4921–4924. doi: 10.1039/C1ee02389f CrossRefGoogle Scholar
  57. 57.
    Tian HN, Yu Z, Hagfeldt A, Kloo L, Sun L (2011) Organic redox couples and organic counter electrode for efficient organic dye-sensitized solar cells. J Am Chem Soc 133(24):9413–9422. doi: 10.1021/Ja2030933 CrossRefGoogle Scholar
  58. 58.
    Ku Z, Rong Y, Xu M, Liu T, Han H (2013) Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Sci Rep 3:3132. doi: 10.1038/srep03132 CrossRefGoogle Scholar
  59. 59.
    Kalowekamo J, Baker E (2009) Estimating the manufacturing cost of purely organic solar cells. Sol Energy 83(8):1224–1231. doi: 10.1016/j.solener.2009.02.003 CrossRefGoogle Scholar
  60. 60.
    Pagliaro M, Ciriminna R, Palmisano G (2008) Flexible solar cells. Chemsuschem 1(11):880–891. doi: 10.1002/cssc.200800127 CrossRefGoogle Scholar
  61. 61.
    Kaltenbrunner M, White MS, Glowacki ED, Sekitani T, Someya T, Sariciftci NS, Bauer S (2012) Ultrathin and lightweight organic solar cells with high flexibility. Nat Commun 3:770. doi: 10.1038/ncomms1772 CrossRefGoogle Scholar
  62. 62.
    Willeke GP (2002) Thin crystalline silicon solar cells. Sol Energy Mater Sol Cells 72(1–4):191-200. PII:S0927-0248(01)00164-7. doi: 10.1016/S0927-0248(01)00164-7
  63. 63.
    Pianezzi F, Chirila A, Blosch P, Seyrling S, Buecheler S, Kranz L, Fella C, Tiwari AN (2012) Electronic properties of Cu(In, Ga)Se2 solar cells on stainless steel foils without diffusion barrier. Prog Photovoltaics 20(3):253–259. doi: 10.1002/Pip.1247 CrossRefGoogle Scholar
  64. 64.
    Chirila A, Buecheler S, Pianezzi F, Bloesch P, Gretener C, Uhl AR, Fella C, Kranz L, Perrenoud J, Seyrling S, Verma R, Nishiwaki S, Romanyuk YE, Bilger G, Tiwari AN (2011) Highly efficient Cu(In, Ga)Se-2 solar cells grown on flexible polymer films. Nat Mater 10(11):857–861. doi: 10.1038/Nmat3122 CrossRefGoogle Scholar
  65. 65.
    Lin Q, Huang H, Jing Y, Fu H, Chang P, Li D, Yao Y, Fan Z (2014) Flexible photovoltaic technologies. J Mater Chem C 2(7):1233. doi: 10.1039/c3tc32197e CrossRefGoogle Scholar
  66. 66.
    An J, Guo W, Ma TL (2012) Enhanced photoconversion efficiency of all-flexible dye-sensitized solar cells Based on a Ti substrate with TiO2 nanoforest underlayer. Small 8(22):3427–3431. doi: 10.1002/smll.201200802 CrossRefGoogle Scholar
  67. 67.
    Yun HG, Bae BS, Kang MG (2011) A simple and highly efficient method for surface treatment of Ti substrates for use in dye-sensitized solar cells. Adv Energy Mater 1(3):337–342. doi: 10.1002/aenm.201000044 CrossRefGoogle Scholar
  68. 68.
    Liu B, Boercker JE, Aydil ES (2008) Oriented single crystalline titanium dioxide nanowires. Nanotechnology 19(50):505604. doi: 10.1088/0957-4484/19/50/505604
  69. 69.
    Kuang D, Brillet J, Chen P, Takata M, Uchida S, Miura H, Sumioka K, Zakeeruddin SM, Gratzel M (2008) Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano 2(6):1113–1116. doi: 10.1021/Nn800174y CrossRefGoogle Scholar
  70. 70.
    Kim D, Lee K, Roy P, Birajdar BI, Spiecker E, Schmuki P (2009) Formation of a non-thickness-limited titanium dioxide mesosponge and its use in dye-sensitized solar cells. Angew Chem Int Edit 48(49):9326–9329. doi: 10.1002/anie.200904455 CrossRefGoogle Scholar
  71. 71.
    Jun Y, Kang MG (2007) The characterization of nanocrystalline dye-sensitized solar cells with flexible metal substrates by electrochemical impedance spectroscopy. J Electrochem Soc 154(1):B68–B71. doi: 10.1149/1.2374943 CrossRefGoogle Scholar
  72. 72.
    Balasingam SK, Kang MG, Jun Y (2013) Metal substrate based electrodes for flexible dye-sensitized solar cells: fabrication methods, progress and challenges. Chem Commun 49(98):11457–11475. doi: 10.1039/C3cc46224b CrossRefGoogle Scholar
  73. 73.
    Miettunen K, Halme J, Lund P (2013) Metallic and plastic dye solar cells. Wiley Interdisc Rev: Energy Environ 2(1):104–120. doi: 10.1002/wene.46 Google Scholar
  74. 74.
    Miettunen K, Asghar I, Ruan XL, Halme J, Saukkonen T, Lund P (2011) Stabilization of metal counter electrodes for dye solar cells. J Electroanal Chem 653(1–2):93–99. doi: 10.1016/j.jelechem.2010.12.022 CrossRefGoogle Scholar
  75. 75.
    Weerasinghe HC, Huang FZ, Cheng YB (2013) Fabrication of flexible dye sensitized solar cells on plastic substrates. Nano Energy 2(2):174–189. doi: 10.1016/j.nanoen.2012.10.004 CrossRefGoogle Scholar
  76. 76.
    Yamaguchi T, Tobe N, Matsumoto D, Nagai T, Arakawa H (2010) Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%. Sol Energy Mater Sol Cells 94(5):812–816. doi: 10.1016/j.solmat.2009.12.029
  77. 77.
    Bazargan MH, Byranvand MM, Kharat AN (2010) A new counter electrode based on copper sheet for flexible dye sensitized solar cells. Chalcogenide Lett 7(8):515–519Google Scholar
  78. 78.
    Xue Z, Jiang C, Wang L, Liu W, Liu B (2013) Fabrication of flexible plastic solid-state dye-sensitized solar cells using low temperature techniques. J Phys Chem C:131118124144002. doi: 10.1021/jp408663d
  79. 79.
    Kumar MH, Yantara N, Dharani S, Graetzel M, Mhaisalkar S, Boix PP, Mathews N (2013) Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem Commun 49(94):11089–11091. doi: 10.1039/C3cc46534a CrossRefGoogle Scholar
  80. 80.
    Liu DY, Kelly TL (2014) Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photonics 8(2):133–138. doi: 10.1038/Nphoton.2013842 CrossRefGoogle Scholar
  81. 81.
    Ellmer K (2012) Past achievements and future challenges in the development of optically transparent electrodes. Nat Photonics 6(12):808–816. doi: 10.1038/Nphoton.2012.282 CrossRefGoogle Scholar
  82. 82.
    Liu JW, Namboothiry MAG, Carroll DL (2007) Optical geometries for fiber-based organic photovoltaics. Appl Phys Lett 90(13):133515. doi: 10.1063/1.2716864
  83. 83.
    Fan X, Chu ZZ, Wang FZ, Zhang C, Chen L, Tang YW, Zou DC (2008) Wire-shaped flexible dye-sensitized solar cells. Adv Mater 20(3):592–595. doi: 10.1002/adma.200701249
  84. 84.
    O’Connor B, Pipe KP, Shtein M (2008) Fiber based organic photovoltaic devices. Appl Phys Lett 92(19). doi: 10.1063/1.2927533
  85. 85.
    Lv ZB, Yu JF, Wu HW, Shang J, Wang D, Hou SC, Fu YP, Wu K, Zou DC (2012) Highly efficient and completely flexible fiber-shaped dye-sensitized solar cell based on TiO2 nanotube array. Nanoscale 4(4):1248–1253. doi: 10.1039/C2nr11532h CrossRefGoogle Scholar
  86. 86.
    Lv ZB, Fu YP, Hou SC, Wang D, Wu HW, Zhang C, Chu ZZ, Zou DC (2011) Large size, high efficiency fiber-shaped dye-sensitized solar cells. PCCP 13(21):10076–10083. doi: 10.1039/C1cp20543a CrossRefGoogle Scholar
  87. 87.
    Fu YP, Lv ZB, Hou SC, Wu HW, Wang D, Zhang C, Chu ZZ, Cai X, Fan X, Wang ZL, Zou DC (2011) Conjunction of fiber solar cells with groovy micro-reflectors as highly efficient energy harvesters. Energ Environ Sci 4(9):3379–3383. doi: 10.1039/C1ee01427g CrossRefGoogle Scholar
  88. 88.
    Peng M, Hou SC, Wu HW, Yang QY, Cai X, Yu X, Yan K, Hu HW, Zhu FR, Zou DC (2014) Integration of fiber dye-sensitized solar cells with luminescent solar concentrators for high power output. J Mater Chem A 2(4):926–932. doi: 10.1039/C3ta14284a CrossRefGoogle Scholar
  89. 89.
    O’Connor B, Nothern D, Pipe KP, Shtein M (2010) High efficiency, broadband solar cell architectures based on arrays of volumetrically distributed narrowband photovoltaic fibers. Opt Express 18(19):A432–A443CrossRefGoogle Scholar
  90. 90.
    Sun H, You X, Deng J, Chen X, Yang Z, Ren J, Peng H (2014) Novel graphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices. Adv Mater. doi: 10.1002/adma.201305188 Google Scholar
  91. 91.
    Zou DC, Lv ZB, Cai X, Hou SC (2012) Macro/microfiber-shaped electronic devices. Nano Energy 1(2):273–281. doi: 10.1016/j.nanoen.2012.01.005 CrossRefGoogle Scholar
  92. 92.
    Fu YP, Wu HW, Ye SY, Cai X, Yu X, Hou SC, Kafafy H, Zou DC (2013) Integrated power fiber for energy conversion and storage. Energ Environ Sci 6(3):805–812. doi: 10.1039/C3ee23970e CrossRefGoogle Scholar
  93. 93.
    Bae J, Park YJ, Lee M, Cha SN, Choi YJ, Lee CS, Kim JM, Wang ZL (2011) Single-fiber-based hybridization of energy converters and storage units using graphene as electrodes. Adv Mater 23(30):3446–3449. doi: 10.1002/adma.201101345
  94. 94.
    Xu WJ, Choi S, Allen MG (2010) Hairlike carbon-fiber-based solar cell. mems 2010: 23rd IEEE international conference on micro electro mechanical systems, Tech Dig 1187–1190Google Scholar
  95. 95.
    He R, Day TD, Krishnamurthi M, Sparks JR, Sazio PJA, Gopalan V, Badding JV (2013) Silicon p-i-n Junction Fibers. Adv Mater 25(10):1461–1467. doi: 10.1002/adma.201203879 CrossRefGoogle Scholar
  96. 96.
    Zhang L, Song L, Tian Q, Kuang X, Hu J, Liu J, Yang J, Chen Z (2012) Flexible fiber-shaped CuInSe2 solar cells with single-wire-structure: design, construction and performance. Nano Energy 1(6):769–776. doi: 10.1016/j.nanoen.2012.07.022 CrossRefGoogle Scholar
  97. 97.
    Lee MR, Eckert RD, Forberich K, Dennler G, Brabec CJ, Gaudiana RA (2009) Solar power wires based on organic photovoltaic materials. Science 324(5924):232–235. doi: 10.1126/science.1168539 CrossRefGoogle Scholar
  98. 98.
    Liu DY, Zhao MY, Li Y, Bian ZQ, Zhang LH, Shang YY, Xia XY, Zhang S, Yun DQ, Liu ZW, Cao AY, Huang CH (2012) Solid-state, polymer-based fiber solar cells with carbon nanotube electrodes. ACS Nano 6(12):11027–11034. doi: 10.1021/Nn304638z Google Scholar
  99. 99.
    Lv Z, Fu Y, Hou S, Wang D, Wu H, Zhang C, Chu Z, Zou D (2011) Large size, high efficiency fiber-shaped dye-sensitized solar cells. PCCP 13(21):10076–10083. doi: 10.1039/c1cp20543a CrossRefGoogle Scholar
  100. 100.
    Yu J, Wang D, Huang Y, Fan X, Tang X, Gao C, Li J, Zou D, Wu K (2011) A cylindrical core-shell-like TiO2 nanotube array anode for flexible fiber-type dye-sensitized solar cells. Nanoscale Res Lett 6(1):94. doi: 10.1186/1556-276X-6-94 CrossRefGoogle Scholar
  101. 101.
    Cai X, Wu H, Hou S, Peng M, Yu X, Zou D (2014) Dye-sensitized solar cells with vertically aligned TiO2 nanowire arrays grown on carbon fibers. ChemSusChem 7(2):474–482. doi: 10.1002/cssc.201301020 CrossRefGoogle Scholar
  102. 102.
    Cai X, Hou SC, Wu HW, Lv ZB, Fu YP, Wang D, Zhang C, Kafafy H, Chu ZZ, Zou DC (2012) All-carbon electrode-based fiber-shaped dye-sensitized solar cells. PCCP 14(1):125–130. doi: 10.1039/C1cp22613d CrossRefGoogle Scholar
  103. 103.
    Wang W, Zhao Q, Li H, Wu HW, Zou DC, Yu DP (2012) Transparent, double-sided, ITO-free, flexible dye-sensitized solar cells based on metal wire/ZnO nanowire arrays. Adv Funct Mater 22(13):2775–2782. doi: 10.1002/adfm.201200168 CrossRefGoogle Scholar
  104. 104.
    Cai FJ, Chen T, Peng HS (2012) All carbon nanotube fiber electrode-based dye-sensitized photovoltaic wire. J Mater Chem 22(30):14856–14860. doi: 10.1039/C2jm32256k CrossRefGoogle Scholar
  105. 105.
    Huang S, Zhang Q, Huang X, Guo X, Deng M, Li D, Luo Y, Shen Q, Toyoda T, Meng Q (2010) Fibrous CdS/CdSe quantum dot co-sensitized solar cells based on ordered TiO2 nanotube arrays. Nanotechnology 21(37):375201. doi: 10.1088/0957-4484/21/37/375201 CrossRefGoogle Scholar
  106. 106.
    Chen H, Zhu L, Wang M, Liu H, Li W (2011) Wire-shaped quantum dots-sensitized solar cells based on nanosheets and nanowires. Nanotechnology 22(47):475402. doi: 10.1088/0957-4484/22/47/475402 CrossRefGoogle Scholar
  107. 107.
    Weintraub B, Wei YG, Wang ZL (2009) Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells. Angew Chem Int Edit 48(47):8981–8985. doi: 10.1002/anie.200904492 CrossRefGoogle Scholar
  108. 108.
    Zhang S, Ji CY, Bian ZQ, Liu RH, Xia XY, Yun DQ, Zhang LH, Huang CH, Cao AY (2011) Single-wire dye-sensitized solar cells wrapped by carbon nanotube film electrodes. Nano Lett 11(8):3383–3387. doi: 10.1021/Nl201790w CrossRefGoogle Scholar
  109. 109.
    Yang ZB, Sun H, Chen T, Qiu LB, Luo YF, Peng HS (2013) Photovoltaic wire derived from a graphene composite fiber achieving an 8.45% energy conversion efficiency. Angew Chem Int Edit 52(29):7545–7548. doi: 10.1002/anie.201301776

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Polymer Science and Engineering, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina

Personalised recommendations