Advertisement

Heavy Metal Accumulation Potential and Tolerance in Tree and Grass Species

  • Arideep Mukherjee
  • Shashi Bhushan Agrawal
  • Madhoolika AgrawalEmail author
Chapter

Abstract

Heavy metals (HM) are nondegradable, persistent, and toxic elements. Heavy metal contamination is a global concern and a major health hazard throughout the world. However, plants have evolved different mechanisms to combat these stresses and even have potential to accumulate them in large quantity. Natural flora has differential ability to metal tolerance with some plants showing induced tolerance at metal-enriched medium, whereas others find it difficult to sustain. Bioaccumulation potential of trees and grasses will be assessed based on peer-reviewed publications. Plants will be classified based on their accumulation potential of different heavy metals. Metal accumulation ability in plants and sources of heavy metals will be assessed for different regions of the world. Anthropogenic input of heavy metals from different sources significantly affects the biogeochemical cycling. Heavy metal depositions considerably affect the plant response. Heavy metal tolerance, uptake, and accumulation in different parts of the plant and possible metal-chelating compounds and their role in metal chelation in trees and grasses will be discussed. Morphological, physiological, biochemical, and molecular biomarkers of heavy metal tolerance or sensitivity among the trees and grasses will be correlated with bioaccumulation potential and heavy metal tolerance. This article will provide a broad overview of higher plant abilities and tolerance capabilities in heavy metal accumulation.

Keywords

Heavy metal Bioaccumulation Trees Grasses Tolerance Chelation 

Notes

Acknowledgments

The authors are thankful to the Head of the Department of Botany for providing library and laboratory facilities. Department of Science and Technology, New Delhi, is acknowledged for Inspire Fellowship to Arideep Mukherjee.

References

  1. Adamidis GC, Aloupi M, Kazakou E, Dimitrakopoulos PG (2014) Intra-specific variation in Ni tolerance, accumulation and translocation in the Ni-hyperaccumulator Alyssum lesbiacum. Chemosphere 95:496–502CrossRefPubMedGoogle Scholar
  2. Aksoy A, Ozturk MA (1997) Nerium oleander L. as a biomonitor of lead and other heavy metal pollution in Mediterranean environments. Sci Total Environ 205:145–150CrossRefGoogle Scholar
  3. Alfani A, Maisto G, Iovieno P, Rutgliano FA, Bartoli G (1996) Leaf contamination by atmospheric pollutants as assessed by elemental analysis of leaf tissue, leaf surface deposit and soil. J Plant Physiol 148:243–248CrossRefGoogle Scholar
  4. Aničič M, Spasič T, Tomaševič M, Rajšič S, Tasič M (2011) Trace elements accumulation and temporal trends in leaves of urban deciduous trees (Aesculus hippocastanum and Tilia spp.). Ecol Indic 11:824–830CrossRefGoogle Scholar
  5. Bech J, Corrales I, Tume P, Barceló J, Duran P, Roca N, Poschenrieder C (2012) Accumulation of antimony and other potentially toxic elements in plants around a former antimony mine located in the Ribes Valley (Eastern Pyrenees). J Geochem Explor 113:100–105CrossRefGoogle Scholar
  6. Beramendi-Orosco LE, Rodriguez-Estrada ML, Morton-Bermea O, Romero FM, Gonzalez-Hernandez G, Hernandez-Alvarez E (2013) Correlations between metals in tree-rings of Prosopis juliflora as indicators of sources of heavy metal contamination. Appl Geochem 39:78–84CrossRefGoogle Scholar
  7. Bohn L, Meyer AS, Rasmussen SK (2008) Phytate: impact on environment and human nutrition. A challenge for molecular breeding. J Zhejiang Univ Sci B 9:165–191CrossRefPubMedPubMedCentralGoogle Scholar
  8. Breaulmann G, Markert B, Weckert V, Herpin U, Yoneda R, Ogino K (2002) Heavy metals in emergent trees and pioneers from tropical forest with special reference to forest fires and local pollution sources in Sarawak, Malaysia. Sci Total Environ 285:107–115CrossRefGoogle Scholar
  9. Buendía-González L, Orozco-Villafuerte J, Cruz-Sosa F, Barrera-Díaz CE, Vernon-Carter EJ (2010) Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresour Technol 101:5862–5867CrossRefPubMedGoogle Scholar
  10. Calzoni GL, Antognoni F, Pari E, Fonti P, Gnes A, Speranza A (2007) Active biomonitoring of heavy metal pollution using Rosa rugosa plants. Environ Pollut 149:239–245CrossRefPubMedGoogle Scholar
  11. Celik A, Kartal AA, Akdoğan A, Kaska Y (2005) Determining the heavy metal pollution in Denizli (Turkey) by using Robinio pseudo-acacia L. Environ Int 31:105–112CrossRefPubMedGoogle Scholar
  12. Chao Y, Zhang M, Feng Y, Yang X, Islam E (2010) cDNA-AFLP analysis of inducible gene expression in zinc hyperaccumulator Sedum alfredii Hance under zinc induction. Environ Exp Bot 68:107–112CrossRefGoogle Scholar
  13. Cicek A, Koparal AS (2004) Accumulation of sulfur and heavy metals in soil and tree leaves sampled from the surroundings of Tunc ¸bilek Thermal Power Plant. Chemosphere 57:1031–1036CrossRefPubMedGoogle Scholar
  14. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182CrossRefPubMedGoogle Scholar
  15. Conesa HM, Faz A, Arnaldos R (2006) Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Union Mining District (SE Spain). Sci Total Environ 366:1–11CrossRefPubMedGoogle Scholar
  16. Conesa HM, Garcia G, Faz A, Arnaldos R (2007) Dynamics of metal tolerant plant communities’ development in mine tailings from the Cartagena-La Union Mining District (SE Spain) and their interest for further revegetation purposes. Chemosphere 68:1180–1185CrossRefPubMedGoogle Scholar
  17. Cseh E (2002) Metal permeability, transport and efflux in plants. In: Prasad MNV, Strazalka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer Academic Publishers, Dordrecht, pp 1–36CrossRefGoogle Scholar
  18. Cucu-Man S, Steinnes S (2013) Analysis of selected biomonitors to evaluate the suitability for their complementary use in monitoring trace element atmospheric deposition, Environ. Monit Assess 185:7775–7791CrossRefGoogle Scholar
  19. de Vives AES, Moreira S, Brienza SMB, Medeiros JGS, Filho MT, Zucchi OLAD, Filho VFN (2006) Monitoring of the environmental pollution by trace element analysis in tree-rings using synchrotron radiation total reflection X-ray fluorescence. Spectrochim Acta Part B: Atom Spectrosc 61:1170–1174CrossRefGoogle Scholar
  20. DeTar RA, Alford ÉR, Pilon-Smits EA (2015) Molybdenum accumulation, tolerance and molybdenum–selenium–sulfur interactions in Astragalus selenium hyperaccumulator and nonaccumulator species. J Plant Physiol 183:32–40CrossRefPubMedGoogle Scholar
  21. El-Hasan T, Al-Omari H, Jiries A, Al-Nasir F (2002) Cypress tree (Cupressus Semervirens L.) bark as an indicator for heavy metal pollution in the atmosphere of Amman City, Jordan. Environ Int 28:513–519Google Scholar
  22. Fakayode SO, Onianwa PC (2002) Heavy metals contamination of soil, and bioaccumulation in Guinea grass (Panicum maximum) around Ikeja Industrial estate, Lagos, Nigeria. Environ Geol 43:145–150CrossRefGoogle Scholar
  23. Fuente V, Rufo L, Juárez BH, Menéndez N, García-Hernández M, Salas-Colera E, Espinosa A (2016) Formation of biomineral iron oxides compounds in a Fe hyperaccumulator plant: Imperata cylindrica (L.) P. Beauv. J Struct Biol 193:23–32CrossRefPubMedGoogle Scholar
  24. Fujiwara FG, Gómez DR, Dawidowskia L, Perelman P, Faggi A (2011) Metals associated with airborne particulate matter in road dust and tree bark collected in a megacity (Buenos Aires, Argentina). Ecol Indic 11:240–247CrossRefGoogle Scholar
  25. Guéguen F, Stille P, Millet M (2011) Air quality assessment by tree bark biomonitoring in urban, industrial and rural environments of the Rhine valley: PCDD/Fs, PCBs and trace metal evidence. Chemosphere 85:195–212CrossRefPubMedGoogle Scholar
  26. Hajar EWI, Sulaimanb AZB, Sakinahb AMM (2014) Assessment of heavy metals tolerance in leaves, stems and flowers of Stevia rebaudiana plant. Procedia Environ Sci 20:386–393CrossRefGoogle Scholar
  27. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11CrossRefPubMedGoogle Scholar
  28. Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hu PJ, Qiu RL, Senthilkumar P, Jiang D, Chen ZW, Tang YT, Liu FJ (2009) Tolerance, accumulation and distribution of zinc and cadmium in hyperaccumulator Potentilla griffithii. Environ Exp Bot 66:317–325CrossRefGoogle Scholar
  30. Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13:3145–3175CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kim S, Takahashi M, Higuchi K, Tsunoda K, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2005) Increased nicotianamine biosynthesis confers enhanced tolerance of high levels of metals, in particular nickel, to plants. Plant Cell Physiol 46:1809–1818CrossRefPubMedGoogle Scholar
  32. Klumpp A, Ansel W, Klumpp G, Breuer J, Vergne P, Sanz MJ, Rasmussen S, Ro-Poulsen H, Ribas Artola A, Peñuelas J, He S, Garrec JP, Calatayud V (2009) Airborne trace element pollution in 11 European cities assessed by exposure of standardised ryegrass cultures. Atmos Environ 43:329–339CrossRefGoogle Scholar
  33. Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534CrossRefPubMedGoogle Scholar
  34. Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that hyperaccumulate nickel. Nature 379:635–638CrossRefGoogle Scholar
  35. Kumar A, Vajpayee P, Ali MB, Tripathi RD, Singh N, Rai UN, Singh SN (2002) Biochemical responses of Cassia siamea Lamk. grown on coal combustion residue (Fly-ash). Bull Environ Contam Toxicol 68:675–683CrossRefPubMedGoogle Scholar
  36. Kummer U, Pacyna J, Pacyna E, Friedrich R (2009) Assessment of heavy metal releases from the use phase of road transport in Europe. Atmos Environ 43:640–647CrossRefGoogle Scholar
  37. Li Y, Chen YY, Yang SG, Tian WM (2015) Cloning and characterization of HbMT2a, a metallothionein gene from Hevea brasiliensis Muell. Arg differently responds to abiotic stress and heavy metals. Biochem Biophys Res Commun 461:95–101CrossRefPubMedGoogle Scholar
  38. Liu MQ, Yanai J, Jiang RF, Zhang F, McGrath SP, Zhao FJ (2008) Does cadmium play a physiological role in the hyperaccumulator Thlaspi caerulescens? Chemosphere 71:1276–1283CrossRefPubMedGoogle Scholar
  39. Madejón P, Murillo JM, Maraňón T, Cabrera F, López R (2002) Bioaccumulation of As, Cd, Cu, Fe and Pb in wild grasses affected by the Aznalcóllar mine spill (SW Spain). Sci Total Environ 290:105–120CrossRefPubMedGoogle Scholar
  40. Manara A (2012) Plant responses to heavy metal toxicity in plants and heavy metals. In: Furini A (ed) SpringerBriefs molecular science, Springer, Dordrecht, Netherlands, 2012 pp. 27–53Google Scholar
  41. Mleczek M, Rissmann I, Rutkowski P, Kaczmarek Z, Golinski P (2009) Accumulation of selected heavy metals by different genotypes of Salix. Environ Exp Bot 66:289–296CrossRefGoogle Scholar
  42. Moradi AB, Conesa HM, Robinson BH, Lehmann E, Kaestner A, Schulin R (2009) Root responses to soil Ni heterogeneity in a hyperaccumulator and a non-accumulator species. Environ Pollut 157:2189–2196CrossRefPubMedGoogle Scholar
  43. Mukherjee A, Agrawal M (2016) Pollution response score of tree species in relation to ambient air quality in an urban area. Bull Environ Contam Toxicol 96:197–202CrossRefPubMedGoogle Scholar
  44. Norouzi S, Khademi H, Cano AF, Acosta JA (2015) Using plane tree leaves for biomonitoring of dust borne heavy metals: a case study from Isfahan, central Iran. Ecol Indic 57:64–73CrossRefGoogle Scholar
  45. Nriagu J, Pacyna J (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139CrossRefPubMedGoogle Scholar
  46. Onder S, Dursun S, Gezgin S, Demirbas A (2007) Determination of heavy metal pollution in grass and soil of city centre green areas (Konya, Turkey). Pol J Environ Stud 16:145–154Google Scholar
  47. Pacheco AM, Barros LIC, Freitas MC, Reis MA, Hipólito C, Oliveira OR (2002) An evaluation of olive-tree barks for the biological monitoring of airborne trace-elements at ground level. Environ Pollut 120:79–86CrossRefPubMedGoogle Scholar
  48. Parraga-Aguado I, Querejeta J-I, González-Alcaraz M-N et al (2014) Usefulness of pioneer vegetation for the phytomanagement of metal(loid)s enriched tailings: grasses vs. shrubs vs. trees. J Environ Manage 133:51–58CrossRefPubMedGoogle Scholar
  49. Pianelli K, Mari S, Marques L, Lebrun M, Czernic P (2005) Nicotianamine over-accumulation confers resistance to nickel in Arabidopsis thaliana. Transgen Res 14:739–748CrossRefGoogle Scholar
  50. Pierre JL, Gautier-Luneau I (2000) Iron and citric acid: a fuzzy chemistry of ubiquitous biological relevance. Biometals 13:91–96CrossRefPubMedGoogle Scholar
  51. Polechonska M, Zawadzki K, Samecka-Cymerman A, Kolon K, Klink A, Krawczyk J, Kempers AJ (2013) Evaluation of the bioindicator suitability of Polygonum aviculare in urban area. Ecol Ind 24:552–556CrossRefGoogle Scholar
  52. Prasad MNV (2004) Metallothioneins, metal binding complexes and metal sequestration in plants. In: Prasad MNV (ed) Heavy metal stress in plants: from biomolecules to ecosystems, 2nd edn. Springer, Berlin, pp 47–83CrossRefGoogle Scholar
  53. Redondo-Gomez S, Mateos-Naranjo E, Vecino-Bueno I, Feldman SR (2011) Accumulation and tolerance characteristics of chromium in a cordgrass Cr-hyperaccumulator, Spartina argentinensis. J Haz Mater 185:862–869CrossRefGoogle Scholar
  54. Ribeiro de Souza SC, Adrián López de Andrade S, Anjos de Souza L, Schiavinato MA (2012) Lead tolerance and phytoremediation potential of Brazilian leguminous tree species at the seedling stage. J Environ Manage 15:299–307Google Scholar
  55. Santos-Jallath J, Castro-Rodr ı A, Huezo-Casillas J, TorresBustillos L (2012) Arsenic and heavy metals in native plants at tailings impoundments in Queretaro, Mexico. Phys Chem Earth 37–39:10–17CrossRefGoogle Scholar
  56. Sawidis T, Breuste J, Mitrovic M, Pavlovic P, Tsigaridas K (2011) Trees as bioindicator of heavy metal pollution in three European cities. Environ Pollut 159(12):3560–3570CrossRefPubMedGoogle Scholar
  57. Sharmila P, Saradhi PP (2002) Proline accumulation in heavy metal stressed plants: an adaptive strategy. In: Prasad MNV, Strzałka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Kulwer Academic, Netherlands, pp 179–199CrossRefGoogle Scholar
  58. Shi G, Chen Z, Teng J, Bi C, Zhou D, Sun C, Li Y, Xu S (2012) Fluxes, variability and sources of cadmium, lead, arsenic and mercury in dry atmospheric depositions in urban, suburban and rural areas. Environ Res 113:28–32CrossRefPubMedGoogle Scholar
  59. Sun RL, Zhou QX, Sun FH, Jin CX (2007) Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L. Environ Exp Bot 60:468–476CrossRefGoogle Scholar
  60. Sun YB, Zhou QX, Wang L, Liu WT (2009) Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. J Hazard Mater 161:808–814CrossRefPubMedGoogle Scholar
  61. Thapa G, Sadhukhan A, Panda SK, Sahoo L (2012) Molecular mechanistic model of plant heavy metal tolerance. Biometals 25:489–505CrossRefPubMedGoogle Scholar
  62. Tomasevic M, Rajsic S, Dordevic D, Tasic M, Krstic J, Novakovic V (2004) Heavy metals accumulation in tree leaves from urban areas. Environ Chem Lett 2:151–154CrossRefGoogle Scholar
  63. Tomašević M, Antanasijević D, Aničić M, Deljanin I, Perić-Grujić A et al (2013) Lead concentrations and isotope ratios in urban tree leaves. Ecol Indic 24:504–509CrossRefGoogle Scholar
  64. Tomaševića M, Aničić M, Jovanović L, Perić-Grujić A, Ristić M (2011) Deciduous tree leaves in trace elements biomonitoring: a contribution to methodology. Ecol Indic 11:1689–1695CrossRefGoogle Scholar
  65. Ugolini F, Tognetti R, Raschi A, Bacci L (2013) Quercus ilex L. as bioaccumulator for heavy metals in urban areas: effectiveness of leaf washing with distilled water and considerations on the trees distance from traffic. Urban For Urban Green 12:576–558CrossRefGoogle Scholar
  66. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776CrossRefPubMedGoogle Scholar
  67. Wang H, Shan X-Q, Wen B, Zhang S, Wang Z-J (2004) Responses of antioxidative enzymes to accumulation of copper in a copper hyperaccumulator of Commelina communis. Arch Environ Con Tox 47:185–192CrossRefGoogle Scholar
  68. Wei C, Ge Z, Chu W, Feng R (2015) Speciation of antimony and arsenic in the soils and plants in an old antimony mine. Environ Exp Bot 109:31–39CrossRefGoogle Scholar
  69. Yadav S (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179CrossRefGoogle Scholar
  70. Yu KF, Kamber BS, Lawrence MG, Greig A, Zhao JX (2007) High-precision analysis on annual variations of heavy metals, lead isotopes and rare earth elements in mangrove tree rings by inductively coupled plasma mass spectrometry. Nucl Instrum Methods Phys Res B Beam Interact Mater Atoms 255:399–408CrossRefGoogle Scholar
  71. Zagorchev L, Seal CE, Kranner I, Odjakova M (2013) A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 14:7405–7432CrossRefPubMedPubMedCentralGoogle Scholar
  72. Zeng XW, Qiu RL, Ying RR, Tang YT, Tang L, Fang XH (2011) The differentially-expressed proteome in Zn/Cd hyperaccumulator Arabis paniculata Franch. in response to Zn and Cd. Chemosphere 82:321–328CrossRefPubMedGoogle Scholar
  73. Zhang XH, Liu J, Huang HT, Chen J, Zhu YN, Wang DQ (2007) Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz. Chemosphere 67:1138–1143CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2016

Authors and Affiliations

  • Arideep Mukherjee
    • 1
  • Shashi Bhushan Agrawal
    • 1
  • Madhoolika Agrawal
    • 1
    Email author
  1. 1.Laboratory of Air Pollution and Global Climate Change, Department of BotanyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations