Advertisement

Regulation of Xenobiotics in Higher Plants: Signalling and Detoxification

  • Shikha Singh
  • Gausiya Bashri
  • Anita Singh
  • Sheo Mohan PrasadEmail author
Chapter

Abstract

Increased anthropogenic activities have aggravated the different chemical pollutants (xenobiotics) in the environment. Xenobiotics are any chemical or other substance that cannot be utilized by plants for their growth and development. Xenobiotics alone and/or in combination can affect the growth and physiology of every organism, which varies species to species. It may also affect the coordinated signalling pathways that alter the gene expression and regulation in higher plants. Therefore, plants have developed the mechanism for the mobilizations of xenobiotics which include three phases, i.e. transformation, conjugation and compartmentation. Further, plants have also evolved various detoxification processes for these xenobiotics. Therefore, in this chapter the different fates of xenobiotics in plant system as well as their signalling and detoxification processes are discussed in detail.

Keywords

Detoxification Fates Signalling Xenobiotics 

References

  1. Ahammed GJ, Choudhary SP, Chen S et al (2013a) Role of brassinosteroids in alleviation of phenanthrene–cadmium co-contamination induced photosynthetic inhibition and oxidative stress in tomato. J Exp Bot 64:199–213CrossRefPubMedGoogle Scholar
  2. Ahammed GJ, Ruan YP, Zhou J et al (2013b) Brassinosteroid alleviates polychlorinated biphenyls induced oxidative stress by enhancing antioxidant enzymes activity in tomato. Chemosphere 90:2645–2653CrossRefPubMedGoogle Scholar
  3. Ahammed GJ, Zhou YH, Xia XJ et al (2013c) Brassinosteroid regulates secondary metabolism in tomato towards enhanced tolerance to phenanthrene. Biol Plant 57(1):154–158CrossRefGoogle Scholar
  4. Alla MMN, Badawi AM, Hassan NM et al (2008) Effect of metribuzin, butachlor and chlorimuron-ethyl on amino acid and protein formation in wheat and maize seedlings. Pestic Biochem Physiol 90:8–18CrossRefGoogle Scholar
  5. Ashton AR, Ziegler P (1987) Lack of effect of the photosystem II-based herbicides diuron and atrazine on growth of photo- heterotrophic Chenopodium rubrum cells at concentrations inhibiting photoautotrophic growth of these cells. Plant Sci 51:269–275CrossRefGoogle Scholar
  6. Baerson SR, Sanchez-Moreiras A, Pedrol-Bonjoch N et al (2005) Detoxification and transcriptomr response in Arabidopsis seedlings exposed to the allelochemical bzoxazolin-2 (3H)-one (BOA). J Biol Chem 280:21867–21881CrossRefPubMedGoogle Scholar
  7. Behringer C, Bartsch K, Schaller A (2011) Safeners recruit multiple signalling pathways for the orchestrated induction of the cellular xenobiotic detoxification machinery in Arabidopsis. Plant Cell Environ 34:1970–1985CrossRefPubMedGoogle Scholar
  8. Belkadhi A, Hediji H, Abbes Z et al (2012) Influence of salicylic acid pre-treatment on cadmium tolerance and its relationship with no-protein thiol production in flax root. Afr J Biotechnol 11:9788–9796Google Scholar
  9. Boada J, Roig T, Perez X et al (2000) Cells overexpressing fructose 2, 6- bisphosphatase showed enhanced pentose phosphate pathway flux and resistance to oxidative stress. FEBS Lett 480:251–264CrossRefGoogle Scholar
  10. Bocova B, Huttova J, Mistrık I et al (2013) Auxin signalling is involved in cadmium-induced glutathione-S-transferase activity in barley root. Acta Physiol Plant 35:2685–2690CrossRefGoogle Scholar
  11. Bouzayen M, Latche A, Pech JC et al (1989) Carrier-mediated uptake of 1- (malonylamine)-cyclopropane-1- carboxylic acid in vacuoles isolate from Catharanthus roseus cells. Plant Physiol 91:1317–1322CrossRefPubMedPubMedCentralGoogle Scholar
  12. Brazier M, Cole DJ, Edwards R (2002) O-Glucosyl transferase activities toward phenolic natural products and xenobiotics in wheat and herbicide-resistant and herbicide-susceptible black-grass (Alopecurus myosuroides). Phytochemistry 59:149–156CrossRefPubMedGoogle Scholar
  13. Christou A, Antoniou C, Christodoulou C et al (2016) Stress-related phenomena and detoxification mechanisms induced by common pharmaceuticals in alfalfa (Medicago sativa L.). Plants Sci Tot Environ 558:652–664CrossRefGoogle Scholar
  14. Cole DJ, Edwards R (2000) Secondary metabolism of agrochemicals in plants. In: Roberts TR (ed) Agrochemicals and plant protection. Wiley, Chichester, pp 107–154Google Scholar
  15. Coupland D (1991) Detoxification of herbicides in plants. In: Caseley JC, Cussans GW, Atkin RK (eds) Herbicide resistance in crops. Butterworth-Heineman, Oxford, pp 263–278CrossRefGoogle Scholar
  16. Davies J, Caseley JC (1999) Herbicide safeners: a review. Pestic Sci 55:1043–1058CrossRefGoogle Scholar
  17. Davies TGE, Coleman JOD (2000) The Arabidopsis thaliana ATP-binding cassette proteins : an emerging superfamily. Plant Cell Environ 23(5):431–443CrossRefGoogle Scholar
  18. Davletova S, Rizhsky L, Liang H et al (2005) Cytosolic Ascorbate Peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–681CrossRefPubMedPubMedCentralGoogle Scholar
  19. Debnam PM, Fernie AR, Leisse A et al (2004) Altered activity of the P2 isoform of plastidic glucose 6-phosphate dehydrogenase in tobacco (Nicotiana tabacum cv. Samsun) causes changes in carbohydrate metabolism and response to oxidative stress in leaves. Plant J 38:49–59CrossRefPubMedGoogle Scholar
  20. DeRidder BP, Dixon DP, Beussman DJ et al (2002) Induction of glutathione-S-transferases in Arabidopsis by herbicide Safeners. Plant Physiol 130(3):1497–1505Google Scholar
  21. DeRidder BP, Goldsbrough PB (2006) Organ-specific expression of glutathione-S-transferases and the efficacy of herbicide safeners in Arabidopsis. Plant Physiol 140:167–175CrossRefPubMedPubMedCentralGoogle Scholar
  22. Desikan R, Mackerness SAH, Hancock JT et al (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dévier MH, Mazellier P, Ait-Aissa S et al (2011) New challenges in environmental analytical chemistry: identification of toxic compounds in complex mixtures. Comptes Rendus Chimie 14:766–779CrossRefGoogle Scholar
  24. DiTomaso JM, Hart JJ, Kochain LV (1993) Compartmentation analysis of Paraquat fluxes in maize roots as a means of estimating the rate of vacuolar accumulation and translocation to shoots. Plant Physiol 102:467–472CrossRefPubMedPubMedCentralGoogle Scholar
  25. Doczi R, Brader G, Pettko-Szandtner A et al (2007) The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling. Plant Cell 19:3266–3279CrossRefPubMedPubMedCentralGoogle Scholar
  26. Edwards R, Del Buono D, Fordham M et al (2005) Differential induction of glutathione transferases and glucosyltransferases in wheat, maize and Arabidopsis thaliana by herbicide safeners. Zeitschrift Naturforsch Biosci C 60:307–316Google Scholar
  27. Ehlting J, Chowrira SG, Mattheus N et al (2008) Comparative transcriptome analysis of Arabidopsis thaliana infested by diamondback moth (Plutella xylostella) larvae reveals signatures of stress response, secondary metabolism and signalling. BMC Genomics 9:154CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ekman DR, Lorenz WW, Przybyla AE et al (2003) SAGE analysis of transcriptome responses in Arabidopsis roots exposed to 2,4,6-trinitrotoluene. Plant Physiol 133:1397–1406CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ekman DR, Wolfe NL, Dean JF (2005) Gene expression changes in Arabidopsis thaliana seedling roots exposed to the munition hexahydro-1,3,5-trinitro-1,3,5-triazine. Environ Sci Tech 39:6313–6320CrossRefGoogle Scholar
  30. Farago S, Brunold C, Kreuz K (1994) Herbicide safeners and glutathione metabolism. Physiol Plant 91:537–542CrossRefGoogle Scholar
  31. Ford KA, Casida JE, Chandran D et al (2010) Neonicotinoid insecticides induce salicylate-associated plant defense responses. Proc Natl Acad Sci USA 107:17527–17532CrossRefPubMedPubMedCentralGoogle Scholar
  32. Foreman J, Demidchik V, Bothwell JH et al (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446CrossRefPubMedGoogle Scholar
  33. Gudesblat GE, Russinova E (2011) Plants grow on brassinosteroids. Curr Opin Plant Biol 14:530–537CrossRefPubMedGoogle Scholar
  34. Hall LM, Moss SR, Powles SB (1997) Mechanisms of resistance to aryloxy phenoxy propionate herbicides in two resistant biotypes of Alopecurus myosuroides (black grass): herbicide metabolism as a cross resistance mechanism. Pesticide Biochem Physiol 57:87–98CrossRefGoogle Scholar
  35. Hatzios KK (1989) Mechanisms of action of herbicide safeners: an over- view. In: Hatzios KK, Hoagland RE (eds) Crop safeners for herbicides: development, uses and mechanisms of action. Academic, San Diego, pp 65–101CrossRefGoogle Scholar
  36. Hatzios KK, Burgos N (2004) Metabolism-based herbicide resistance: regulation by safeners. Weed Sci 52:454–467CrossRefGoogle Scholar
  37. Hauschild R, von Schaewen A (2003) Differential regulation of glucose-6-phosphate dehydrogenase isoenzyme activities in potato. Plant Physiol 133:47–62CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hernandez LE, Villasante CO, Montero-Palmero MB et al (2012) Heavy metal perception in a microscale environment: a model system using high doses of pollutants. In: Gupta DK, Sandalio LM (eds) Metal toxicity in plants: perception, signaling and remediation. Springer, Berlin/HeidelbergGoogle Scholar
  39. Holton T, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083CrossRefPubMedPubMedCentralGoogle Scholar
  40. Iwata Y, Koizumi N (2005) An Arabidopsis transcription factor, AtbZIP60, regulates the endoplasmic reticulum stress response in a manner unique to plants. Proc Natl Acad Sci USA 102:5280–5285CrossRefPubMedPubMedCentralGoogle Scholar
  41. Jaspers P, Kangasjarvi J (2010) Reactive oxygen species in abiotic stress signaling. Physiologia Plant 138:405–413CrossRefGoogle Scholar
  42. Jiang QQ, Yang HQ, Sun X et al (2012) Relation between polyamine metabolism and cell death in roots of Malus hupehensis Rehd under cadmium stress. J Int Agri 11:1129–1136Google Scholar
  43. Jin XF, Chen C, Han HJ et al (2011) Microarray analysis of the phytoremediation and phytosensing of occupational toxicant napththalene. J HazardMat 189:19–26CrossRefGoogle Scholar
  44. Kagami H, Pitzschke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci 10:339–346Google Scholar
  45. Koch KE (1996) Carbohydrate modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 47:509–540CrossRefPubMedGoogle Scholar
  46. Kreuz LE, Levy AH (1965) Physical properties of chick interferon. J Bacteriol 89:462–469Google Scholar
  47. Kreuz KR, Tommasini R, Martinoia E (1996) Old enzymes for a new job: How cells dispose of herbicides. Plant Physiol 111:349–353CrossRefPubMedPubMedCentralGoogle Scholar
  48. Loeffler C, Berger S, Guy A et al (2005) B1-phytoprostanes trigger plant defense and detoxification responses. Plant Physiol 137:328–340CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lupinkova L, Komenda J (2004) Oxidative modifications of the Photosystem II D1 protein by reactive oxygen species: from isolated protein to cyanobacterial cells. Photochem Photobiol 79:152–162CrossRefPubMedGoogle Scholar
  50. Marrs KA (1996) The function and regulation of glutathione-S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–158CrossRefPubMedGoogle Scholar
  51. Mittler R, Vanderauwera S, Gollery M et al (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498CrossRefPubMedGoogle Scholar
  52. Mori IC, Schroeder JI (2004) Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechano transduction. Plant Physiol 135:702–708CrossRefPubMedPubMedCentralGoogle Scholar
  53. Mosblech A, Feussner I, Heilmann I (2009) Oxylipins: structurally diverse metabolites from fatty acid oxidation. Plant Physiol Biochem 47:511–517CrossRefPubMedGoogle Scholar
  54. Mueller MJ, Berger S (2009) Reactive electrophilic oxylipins: pattern recognition and signalling. Phytochemistry 70:1511–1521CrossRefPubMedGoogle Scholar
  55. Mueller S, Hilbert B, Dueckershoff K et al (2008) General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. Plant Cell 20:768–785CrossRefPubMedPubMedCentralGoogle Scholar
  56. Mumma RO, Davidonis GH (1983) Plant tissue culture and pesticide metabolism. In: Huston DH, Roberts TR (eds) Prog in pesticide biochem 3. Wiley, Chichester, pp 255–278Google Scholar
  57. Nandula VK, Reddy KN, Rimando AM et al (2007) Glyphosate-resistant and susceptible soybean (Glycine max) and canola (Brassica napus) dose response and metabolism relationships with glyphosate. J Agric Food Chem 55:3540–3545CrossRefPubMedGoogle Scholar
  58. Nishikawa F, Kato M, Hyodo H et al (2005) Effect of sucrose on ascorbate level and expression of genes involved in the ascorbate biosynthesis and recycling pathway in harvested broccoli florets. J Exp Bot 56:65–72PubMedGoogle Scholar
  59. Nishiyama Y, Allakhverdiev SI, Yamamoto H (2004) Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry 43:11321–11330CrossRefPubMedGoogle Scholar
  60. Nogushi T (2002) Dual role of triplet localization on the accessory chlorophyll in the photosystem II reaction center: photoprotection and photodamage of the D1 protein. Plant Cell Physiol 43:1112–1116CrossRefGoogle Scholar
  61. Owen WJ (2000) Herbicide metabolism as a basis for selectivity. In: Roberts T (ed) Metabolism of agrochemicals in plants. Wiley, Chichester, pp 211–258Google Scholar
  62. Peng RH, Xu RR, Fu XY et al (2011) Microarray analysis of the phytoremediation and phytosensing of occupational toxicant napththalene. J Hazard Mat 189:19–26CrossRefGoogle Scholar
  63. Ramel F, Sulmon C, Cabello-Hurtado F et al (2007) Genome wide interacting effects of sucrose and herbicide- mediated stress in Arabidopsis thaliana: novel insights into atrazine toxicity and sucrose-induced tolerance. BMC Genomics 8:450CrossRefPubMedPubMedCentralGoogle Scholar
  64. Ramel F, Sulmon C, Bogard M et al (2009) Differential dynamics of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets. BMC Plant Biol 9:28CrossRefPubMedPubMedCentralGoogle Scholar
  65. Ramel F, Birtic S, Cuine S et al (2012) Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiol 158:1267–1278CrossRefPubMedPubMedCentralGoogle Scholar
  66. Rea PA (1999) MRP subfamily ABC transporters from plants and yeasts. J Exp Bot 50:895–913CrossRefGoogle Scholar
  67. Rea PA, Martinoia E, Li ZS et al (1998) From vacuolar GS-X pumps to multispecific ABC transporters. Annu Rev Plant Physiol Plant Mol Biol 49:727–760CrossRefPubMedGoogle Scholar
  68. Reddy KN, Rimando AM, Duke SO (2004) Amino methyl phosphonic acid, a metabolite of glyphosate, causes injury in glyphosate-treated, glyphosate-resistant soybean. J Agric Food Chem 52:5139–5143CrossRefPubMedGoogle Scholar
  69. Riechers DE, Vaughn KC, Molin WT (2005) The role of plant glutathione-S-transferases in herbicide metabolism. In: Clark JM, Ohkawa H (eds) Environmental fate and safety management of agrochemicals, ACS symposium series 899. American Chemical Society, Washington, DC, pp 216–232CrossRefGoogle Scholar
  70. Riechers DE, Kreuz K, Zhang Q (2010) Detoxification without intoxication: Herbicide safeners activate plant defense gene expression. Plant Physiol 153:3–13CrossRefPubMedPubMedCentralGoogle Scholar
  71. Rinalducci S, Pedersen JZ, Zolla L (2004) Formation of radicals from singlet oxygen produced during photoinhibition of isolated light-harvesting proteins of photosystem II. Biochim Biophys Acta 1608:63–73CrossRefPubMedGoogle Scholar
  72. Rishi A, Muni S, Kapur V et al (2004) Identification and analysis of safener-inducible expressed sequence tags in Populus using a cDNA microarray. Planta 220:296–306CrossRefPubMedGoogle Scholar
  73. Roitsch T (1999) Source-sink regulation by sugar and stress. Curr Opin Plant Biol 2:198–206CrossRefPubMedGoogle Scholar
  74. Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell Suppl 14:S185–S205Google Scholar
  75. Rutherford AW, Krieger-Liszkay A (2001) Herbicide-induced oxidative stress in photosystem II. Trends Biochem Sci 26:648–653CrossRefPubMedGoogle Scholar
  76. Ryter SW, Tyrrell RM (1998) Singlet molecular oxygen: a possible effector of eukaryotic gene expression. Free Radical Biol Med 24:1520–1534CrossRefGoogle Scholar
  77. Saari LL, Cotterman JC, Thill DC (1994) Resistance to aceto lactate synthase inhibiting herbicides. In: Powles SB, Holtum JAM (eds) Herbicide resistance in plants. Lewis Publisher, Boca Raton, pp 83–139Google Scholar
  78. Salvemini F, Franze A, Iervolino A et al (1999) Enhanced glutathione levels and oxidoresistance mediated by increased glucose-6-phosphate dehydrogenase expression. J Biol Chem 274:2750–2757CrossRefPubMedGoogle Scholar
  79. Sandermann H (1987) Pestizid-Ruckstande in Nahrungspflanzen. Die Rolle des pflanzlichen Metabolismus. Naturwissenschanften 74:573–578CrossRefGoogle Scholar
  80. Schmitt R, Sandermann H Jr (1982) Specific localization of beta-D-glucoside conjugates of 2, 4-dichlorophenoxyacetic acid in soy- bean vacuoles [Glycine max]. Zeitschriftfuer Naturforschung Section C Biosci 37:772–777Google Scholar
  81. Schröder P, Daubner D, Maier H et al (2008) Phytoremediation of organic xenobiotics– Glutathione dependent detoxification in Phragmites plants from European treatment sites. Bioresour Technol 99(15):7183–7191CrossRefPubMedGoogle Scholar
  82. Scott-Craig JS, Casida JE, Poduje L et al (1998) Herbicide safener binding protein of maize: purification, cloning, and expression of an encoding cDNA. Plant Physiol 116:1083–1089CrossRefPubMedPubMedCentralGoogle Scholar
  83. Serra AA, Nuttens A, Larvor V et al (2013) Low environmentally relevant levels of bioactive xenobiotics and associated degradation products cause cryptic perturbations of metabolism and molecular stress responses in Arabidopsis thaliana. J Exp Bot 64:2753–2766CrossRefPubMedGoogle Scholar
  84. Skipsey M, Knight KM, Brazier-Hicks M et al (2011) Xenobiotic responsiveness of Arabidopsis thaliana to a chemical series derived from a herbicide safener. J Biol Chem 286:32268–32276CrossRefPubMedPubMedCentralGoogle Scholar
  85. Steinrücken HC, Amrhein N (1980) The herbicide glyphosate is a potent inhibitor of 5-enol pyruvyl shikimic acid-3-phosphate synthase. Bioch Biophy Res Com 94:1207–1212CrossRefGoogle Scholar
  86. Sulmon C, Gouesbet G, Couee I et al (2004) Sugar-induced tolerance to atrazine in Arabidopsis seedlings: interacting effects of atrazine and soluble sugars on psbA mRNA and D1 protein levels. Plant Sci 167:913–923CrossRefGoogle Scholar
  87. Sulmon C, Gouesbet G, El Amrani A et al (2006) Sucrose-induced tolerance to atrazine in Arabidopsis seedlings involves activation of oxidative and xenobiotic stress responses. Plant Cell Rep 25:489–498CrossRefPubMedGoogle Scholar
  88. Szekacs A, Darvas B (2012) Forty years with glyphosate. In: Hasaneen MNAE-G (ed) Herbicides-properties, synthesis and control of weeds. In Tech, Rijeka, pp 247–284Google Scholar
  89. Thibaud MC, Gineste S, Nussaume L et al (2004) Sucrose increases pathogenesis-related PR-2 expression in Arabidopsis thaliana through an SA-dependent but NPR1-independent sig- naling pathway. Plant Physiol Biochem 42:81–88CrossRefPubMedGoogle Scholar
  90. Thomas EW, Loughman BC, Powell RG (1964) Metabolic rate of 2, 4-D in the stem tissue of Phaseolus vulgaris. Nature 204:884–885CrossRefGoogle Scholar
  91. Timmermann KP (1989) Molecular characterization of corn glutathione-S-transferase isoenzymes involved in herbicide detoxification. Physiol Planta 77:465–471CrossRefGoogle Scholar
  92. Unver T, Bakar M, Shearman RC et al (2010) Genome-wide profiling and analysis of Festuca arundinacea miRNAs and transcriptomes in response to foliar glyphosate application. Mol Genet Genomics 283:397–413CrossRefPubMedGoogle Scholar
  93. Walton JD, Casida JE (1995) Specific binding of a dichloroacetamide herbicide safener in maize at a site that also binds thiocarbamate and chloroacetanilide herbicides. Plant Physiol 109:213–219CrossRefPubMedPubMedCentralGoogle Scholar
  94. Wang JT, Jiang YP, Chen SC et al (2010) The different responses of glutathione-dependent detoxification pathway to fungicide chlorothalonil and carbendazim in tomato leaves. Chemosphere 79:958–965CrossRefPubMedGoogle Scholar
  95. Weber H (2002) Fatty acid-derived signals in plants. Trends Plant Sci 7:217–224CrossRefPubMedGoogle Scholar
  96. Weisman D, Alkio M, Colon-Carmona A (2010) Transcriptional responses to polycyclic aromatic hydrocarbon-induced stress in Arabidopsis thaliana reveal the involvement of hormone and defense signaling pathways. BMC Plant Biol doi. doi: 10.1186/1471-2229-10-59 Google Scholar
  97. Wink M (1997) Special nitrogen metabolism. In: Dey PM, Harborne J (eds) Plant biochemistry. Academic Press, San Diego/London, pp 439–486CrossRefGoogle Scholar
  98. Xia XJ, Zhang Y, Wu JX et al (2009) Brassinosteroids promote metabolism of pesticides in cucumber. J Agric Food Chem 57:8406–8413CrossRefPubMedGoogle Scholar
  99. Zhang H, Huang Z, Xie B et al (2004) The ethylene, jasmonate, abscisic acid and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco. Planta 220:262–270CrossRefPubMedGoogle Scholar
  100. Zhang Q, Xu FX, Lambert KN et al (2007) Safeners coordinately induce the expression of multiple proteins and MRP transcripts involved in herbicide metabolism and detoxification in Triticum tauschii seedling tissues. Proteomics 7:1261–1278CrossRefPubMedGoogle Scholar
  101. Zhang JJ, Lu YC, Zhang SH et al (2016) Identification of transcriptome involved in atrazine detoxification and degradation in alfalfa (Medicago sativa) exposed to realistic environmental contamination. Ecotoxicol Environ Saf 130:103–112CrossRefPubMedGoogle Scholar
  102. Zheleva DT, Tsonev T, Sergiev I et al (1994) Protective effect of exogenous polyamines against atrazine in pea plants. J Plant Growth Regul 13:203–211CrossRefGoogle Scholar
  103. Zhou Y, Xia X, Yu G et al (2015) Brassinosteroids play a critical role in the regulation of pesticide metabolism in crop plants. Sci Rep 5:9018. doi: 10.1038/srep09018

Copyright information

© Springer Nature Singapore Pte Ltd. 2016

Authors and Affiliations

  • Shikha Singh
    • 1
  • Gausiya Bashri
    • 1
  • Anita Singh
    • 1
  • Sheo Mohan Prasad
    • 1
    Email author
  1. 1.Ranjan Plant Physiology and Biochemistry Laboratory, Department of BotanyUniversity of AllahabadAllahabadIndia

Personalised recommendations