Advertisement

Heavy Metal and Their Regulation in Plant System: An Overview

  • Dhananjay Kumar
  • D. P. Singh
  • S. C. Barman
  • Narendra KumarEmail author
Chapter

Abstract

Unplanned industrialization and improper waste disposal have resulted in the release of enormous quantities of inorganic toxicants like metal, metalloids, and radionuclides in the biosphere. Since, metals are non-biodegradable and tend to bioaccumulate via food chain, they pose threat to human health. Indiscriminate disposal of industrial waste to the environment causes adverse impact on ecosystem. Plants growing on metal-contaminated sites display several disturbances related to physiology and biochemical process like gaseous exchange, CO2 fixation, respiration, nutrient absorption, etc. These disturbances subsequently cause reduction in plant growth and lower biomass production. Although being an essential micronutrient, some heavy metals at lower concentrations are vital for plant growth; however, at higher concentrations they become very toxic. To cope up with the metal toxicity, plants have developed various mechanisms like immobilization, exclusion, chelation, and compartmentization. Plants have distinct cellular mechanism such as chelation and vacuolar compartmentization of metals to withstand the metal toxicity. Phytochelatins, the thiol peptides, potentially chelate metals and form complexes in cytoplasm; subsequently these metal-thiol complexes are sequestrated into vacuole via ATP-binding cassette transporters (ABC transporters). In the last couple of decades, the role of phytochelatin synthetase (PCS) and phytochelatins (PCs) in metal detoxification has been proven. In present scenario, there is a great need of sound and intensified research for better understanding of metal toxicity and its metabolism in plants to maintain our ecological harmony.

Keywords

Heavy metals Toxicity Contamination Metabolism 

References

  1. Adrees M, Ali S, Rizwan M, Ibrahim M et al (2015a) The effect of excess copper on growth and physiology of important food crops: a review. Environ Sci Pollut Res 22:8148–8162CrossRefGoogle Scholar
  2. Adrees M, Ali S, Rizwan M, Zia-ur-Rehman M et al (2015b) Mechanism of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxical Environ Safe 119:186–197CrossRefGoogle Scholar
  3. Adriano D (1992) Biogeochemistry of trace metals. Lewis Publishers, Boca RatonGoogle Scholar
  4. Ahemad M (2015) Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria. J Genet Eng Biotechnol 13:51–58CrossRefGoogle Scholar
  5. Ahmad MS, Ashraf M (2011) Essential roles and hazardous effects of nickel in plants. Rev Environ Contam Toxicol 214:125–167PubMedGoogle Scholar
  6. Ahn YO, Kim SH, Lee J, Kim HR, Lee H-S, Kwak S-S (2012) Three Brassica rapa metallothionein genes are differentially regulated under various stress conditions. Mol Biol Rep 39(3):2059–2067PubMedCrossRefGoogle Scholar
  7. Alcantara E, Romera FJ, Canete M, De La Guardia MD (1994) Effects of heavy metals on both induction and function of root Fe(III) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants. J Exp Bot 45:1893–1898CrossRefGoogle Scholar
  8. Alloway BJ (2008) Micronutrients and crop production: an introduction. In Alloway BJ (ed) Micronutrient deficiency in global crops production. Springer, Dordrecht, pp 1–40Google Scholar
  9. AMAP (2002) Arctic pollution Arctic monitoring and assessment program Oslo, Norvay, XII + 111Google Scholar
  10. Anjum SA, Tanveer M, Hussain S, Shahzad B et al (2016) Osmoregulation and antioxidant production in maize under combined cadmium and arsenic stress. Environ Sci Pollut Res 23:11864–11875CrossRefGoogle Scholar
  11. Asgher M, Iqbal M, Khan R, Naser AA, Nafees AK (2015) Minimising toxicity of cadmium in plants—role of plant growth regulators. Protoplasma 252:399–413PubMedCrossRefGoogle Scholar
  12. Assche VF, Clijsters H (1983) Multiple effects of heavy metals on photosynthesis. In: Marcelle R (ed) Effects of stress on photosynthesis. Nijhoff/Junk The Hague 7: 371–382Google Scholar
  13. Assche VF, Clijsters H (1990) Effect of metals on enzyme activity in plants. Plant Cell Environ 13:195–206CrossRefGoogle Scholar
  14. Bachman GR, Miller WB (1995) Iron chelate inducible iron/manganese toxicity in zonal geranium. J Plant Nutr 18:1917–1929CrossRefGoogle Scholar
  15. Balestrasse KB, Benavides MP, Gallego SM, Tomaro ML (2003) Effect on cadmium stress on nitrogen metabolism in nodules and roots of soybean plants. Func Plant Biol 30:57–64CrossRefGoogle Scholar
  16. Bauddh K, Singh RP (2012) Cadmium tolerance and its phytoremediation by two oil yielding plants Ricinus communis (L.) and Brassica juncea (L.) from the contaminated soil. Int J Phytorem 14:772–785CrossRefGoogle Scholar
  17. Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremidation of toxic metals-using plants to clean up the environment. Wiley, New York, pp 53–70Google Scholar
  18. Bluskov S, Arocena JM, Omotoso OO, Young JP (2005) Uptake, distribution and speciation of chromium in Brassica juncea. Int J Phytorem 7(2):153–155CrossRefGoogle Scholar
  19. Bot LJ, Kirkby EA, Beusichem ML (1990a) Manganese toxicity in tomato plants: effects on cation uptake and distribution. J Plant Nutr 13:513–525CrossRefGoogle Scholar
  20. Bot LJ, Kirkby EA, Beusichem ML (1990b) Manganese toxicity in tomato plants: effects on cation uptake and distribution. J Plant Nutr 13:5–13CrossRefGoogle Scholar
  21. Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702PubMedCrossRefGoogle Scholar
  22. Buchanan B, Grusen W, Jones R (2000) Biochemistry and molecular biology of plants. Ame Soc Plant Physiol Maryland 1367Google Scholar
  23. Cakmak I (2000) Possible roles of Zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205CrossRefGoogle Scholar
  24. Chatterjee C, Gopal R, Dube BK (2006) Physiological and biochemical responses of French bean to excess cobalt. J Plant Nutr 29:127–136CrossRefGoogle Scholar
  25. Chiang HC, Lo JC, Yeh KC (2006) Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray. Environ Sci Technol 40(21):6792–6798PubMedCrossRefGoogle Scholar
  26. Choi JM, Pak CH, Lee CW (1996) Micronutrient toxicity in French marigold. J Plant Nutr 19:901–916CrossRefGoogle Scholar
  27. Clarimont KB, Hagar WG, Davis EA (1986) Manganese toxicity to chlorophyll synthesis in tobacco callus. Plant Physiol 80:291–293CrossRefGoogle Scholar
  28. Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212(4):475–486PubMedCrossRefGoogle Scholar
  29. Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88(11):1707–1719PubMedCrossRefGoogle Scholar
  30. Clijsters H, Van Assche F (1985) Inhibition of photosynthesis by heavy metals. Photosynth Res 7:31–40PubMedCrossRefGoogle Scholar
  31. Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123(3):825–832PubMedPubMedCentralCrossRefGoogle Scholar
  32. Dalcorso G, Farinati S, Maistri S, Furini A (2008) How plants cope with cadmium: staking all on metabolism and gene expression. J Integr Plant Biol 50(10):1268–1280PubMedCrossRefGoogle Scholar
  33. Dalcorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5(6):1–5CrossRefGoogle Scholar
  34. Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98:29–36PubMedCrossRefGoogle Scholar
  35. Davies BE (1995) Lead and other heavy metals in urban areas and consequences for the health of their inhabitants. In: Majumdar SK, Miller EW, Brenner FJ (eds) Environmental contaminants, ecosystems and human health. The Pennsylvania Academy of Science, Easton, pp 287–307Google Scholar
  36. De DN (2000) Plant cell vacuoles. CSIRO Publishing, CollingwoodGoogle Scholar
  37. Degraeve N (1981) Carcinogenic, teratogenic and mutagenic effects of cadmium. Mutat Res 117:19–27Google Scholar
  38. Delnomdedieu M, Basti MM, Otvos JD, Thomas DJ (1994) Reduction and binding of arsenate and dimethylarsenate by glutathione-a magnetic-resonance study. Chem Biol Interact 90:139–155PubMedCrossRefGoogle Scholar
  39. Demirevska-kepova K, Simova-Stoilova L, Stoyanova Z, Holzer R, Feller U (2004) Biochemical changes in barely plants after excessive supply of copper and manganese. Environ Exp Bot 52:253–266CrossRefGoogle Scholar
  40. Dhankhar R, Sainger PA, Sainger M (2012) Phytoextraction of zinc: physiological and molecular mechanism. Soil Sediment Contam 21:115–133CrossRefGoogle Scholar
  41. Dietz K-J, Baier M, Kra¨mer U (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, Berlin, pp 73–97CrossRefGoogle Scholar
  42. Dube BK, Tewari K, Chatterjee J, Chatterjee C (2003) Excess chromium alters uptake and translocation of certain nutrients in citrullus. Chemosphere 53:1147–1153PubMedCrossRefGoogle Scholar
  43. Dubey RS (2011) Metal toxicity, oxidative stress and antioxidative defense system in plants. In: Gupta SD (ed) Reactive oxygen species and antioxidants in higher plants. CRC Press, Boca Raton, pp 177–203Google Scholar
  44. Ducic T, Polle A (2007) Manganese toxicity in two varieties of Douglas fir (Pseudotsuga menziesii var. viridis and glauca) seedlings as affected by phosphorus supply. Funct Plant Biol 34:31–40CrossRefGoogle Scholar
  45. Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26:776–781CrossRefGoogle Scholar
  46. Elamin OM, Wilcox GE (1986a) Effect of magnesium and manganese nutrition on musk melon growth and manganese toxicity. J Am Soc Hortic Sci 111:582–587Google Scholar
  47. Elamin OM, Wilcox GE (1986b) Effect of magnesium and manganese nutrition on water melon growth and manganese toxicity. J Am Soc Hortic Sci 111:588–593Google Scholar
  48. Ernst WHO, Verkleij JAC, Schat H (1992) Metal tolerance in plants. Acta Bot Neerlandica 41:229–248CrossRefGoogle Scholar
  49. Fageria N, Baligar V, Clark R (2002) Micronutrients in crop production. Adv Agron 77:185–268CrossRefGoogle Scholar
  50. Fayiga AO, Ma LQ (2006) Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata. Sci Total Environ 359:17–25PubMedCrossRefGoogle Scholar
  51. Fontes RLS, Cox FR (1998) Zinc toxicity in soybean grown at high iron concentration in nutrient solution. J Plant Nutr 21:1723–1730CrossRefGoogle Scholar
  52. Foy C, Chaney R, White M (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29:511–566CrossRefGoogle Scholar
  53. Foy CD, Weil RR, Coradetti CA (1995) Differential manganese tolerances of cotton genotypes in nutrient solution. J Plant Nutr 18:685–706CrossRefGoogle Scholar
  54. Gajewska E, Sklodowska M, Slaba M, Mazur J (2006) Effect of nickel on antioxidative enzymes activities, proline and chlorophyll contents in wheat shoots. Biol Plant 50:653–659CrossRefGoogle Scholar
  55. Gardea-Torresdey JL, de la Rosa G, Peralta-Videa JR, Montes M, Cruz-Jimenez G, Cano-Aguilera I (2005) Differential uptake and transport of trivalent and hexavalent chromium by tumbleweed (Salsola kali). Arch Environ Contam Toxicol 48:225–232PubMedCrossRefGoogle Scholar
  56. Gekeler W, Grill E, Winnacker EL, Zenk MH (1988) Algae sequester heavy metals via synthesis of phytochelatin complexes. Archiv Microbiol 150:197–202CrossRefGoogle Scholar
  57. Godzik B (1993) Heavy metal contents in plants from zinc dumps and reference area. Pol Bot Stud 5:113–132Google Scholar
  58. Grill E, Winnacker E-L, Zenk MH (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants are functionally analogous to metallothioneins. Proc Natl Acad Sci U S A 84:439–443PubMedPubMedCentralCrossRefGoogle Scholar
  59. Gruenhage L, Jager IIJ (1985) Effect of heavy metals on growth and heavy metals content of Allium Porrum and Pisum sativum. Angew Bot 59:11–28Google Scholar
  60. Guest C, Schulze D, Thompson I, Huber D (2002) Correlating manganese X-ray absorption near-edge structure spectra with extractable soil manganese. Soil Sci Soc Am J 66:1172–1181CrossRefGoogle Scholar
  61. Gunes A, Pilbeam DJ, Inal A (2009) Effect of arsenic-phosphorous interaction on arsenic-induced oxidative stress in chickpea plants. Plant Soil 314:211–220CrossRefGoogle Scholar
  62. Guo J, Dai X, Xu W, Ma M (2008) Overexpressing GSH1 and AsPCS1 simultaneously increase the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026PubMedCrossRefGoogle Scholar
  63. Habiba U, Ali S, Farid M, Shakoor MB, Rizwan M, Ibrahim M, Abbasi GH, Hayat T, Ali M (2015) EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L. Environ Sci Pollut Res 22:1534–1544CrossRefGoogle Scholar
  64. Haghiri F (1973) Cadmium uptake by plants. J Environ Qual 2:93–96CrossRefGoogle Scholar
  65. Hegedüs A, Erdei S, Horváth G (2001) Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Sci 160:1085–1093PubMedCrossRefGoogle Scholar
  66. Hernandez LE, Carpena-Ruiz R, Garate A (1996) Alterations in the mineral nutrition of pea seedlings exposed to cadmium. J Plant Nutr 19:1581–1598CrossRefGoogle Scholar
  67. Horst WJ (1988) The physiology of manganese toxicity. In: Graham RD, Hannam RJ, Uren NJ (eds) Manganese in soil and plants. Kluwer Academic Publishers, Dordrecht, pp 175–188CrossRefGoogle Scholar
  68. Horiguchi T (1988) Mechanism of manganese toxicity and tolerance of plants. IV. Effects of silicon on alleviation of manganese toxicity of rice plants. Soil Sci Plant Nutr 3(4):65–73CrossRefGoogle Scholar
  69. Hossain MA, Fujita M (2009) Purification of glyoxalase I from onion bulbs and molecular cloning of its cDNA. Biosci Biotechnol Biochem 73(9):2007–2013PubMedCrossRefGoogle Scholar
  70. Hossain MA, Hossain MZ, Fujita M (2009) Stress-induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene. Aus J Crop Sci 3(2):53–64Google Scholar
  71. Hossain MA, Hossain MD, Rohman MM, da Silva JAT, Fujita M (2012a) Onion major compounds (flavonoids, organosulfurs) and highly expressed glutathione-related enzymes: possible physiological interaction, gene cloning and abiotic stress response. In: Aguirre CB, Jaramillo LM (eds) Onion consumption and health. Nova, New YorkGoogle Scholar
  72. Hossain MA, Piyatida P, Teixeira da Silva JA, Fujita M (2012b) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot. doi: 10.1155/2012/872875 Google Scholar
  73. Huffman EWD Jr, Allaway HW (1973) Chromium in plants: distribution in tissues, organelles, and extracts and availability of bean leaf Cr to animals. J Agric Food Chem 21:982–986PubMedCrossRefGoogle Scholar
  74. Humphries J, Stangoulis J, Graham R (2007) Manganese. In: Pilbeam D, Barker A (eds) Handbook of plant nutrition. Taylor and Francis, Boca Raton, pp 351–366Google Scholar
  75. Iwasaki K, Sakurai K, Takahashi E (1990) Copper binding by the root cell walls of Italian ryegrass and red clover. Soil Sci Plant Nutr 36:431–439CrossRefGoogle Scholar
  76. James BR, Barlett RJ (1983) Behavior of chromium in soils VII. Adsorption and reduction of hexavalent forms. J Environ Qual 12:177–181CrossRefGoogle Scholar
  77. Kagi JHR (1991) Overview of metallothionein. Methods Enzymol 205:613–626PubMedCrossRefGoogle Scholar
  78. Kara Y (2005) Bioaccumulation of Cu, Zn and Ni from the wastewater by treated Nasturtium officinal. Int J Environ Sci Technol 2(1):63–67CrossRefGoogle Scholar
  79. Keller C, Rizwan M, Davidian J-C, Pokrovsky OS, Bovet N, Chaurand P, Meunier JD (2015) Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 μM Cu. Planta 241:847–860PubMedCrossRefGoogle Scholar
  80. Khan MIR, Iqbal N, Masood A, Mobin M, Anjum NA, Khan NA (2016) Modulation and significance of nitrogen and sulfur metabolism in cadmium challenged plants. Plant Growth Regul 78:1–11CrossRefGoogle Scholar
  81. Kitao M, Lei TT, Koike T (1997a) Effect of manganese toxicity on photosynthesis of white birch (Betula platyphylla var. japonica) seedlings. Physiol Plant 101:249–256CrossRefGoogle Scholar
  82. Kitao M, Lei TT, Koike T (1997b) Effects of manganese in solution culture on the growth of five deciduous broad-leaved tree species with different successional characters from northern Japan. Photosynth 36:3–14Google Scholar
  83. Kogelmann W, Sharpe W (2006) Soil acidity and manganese in declining and non-declining sugar maple stands in Pennsylvania. J Environ Qual 35:433–441PubMedCrossRefGoogle Scholar
  84. Kramer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–1353PubMedPubMedCentralCrossRefGoogle Scholar
  85. Kramer U, Talke I, Hanikenne M (2007) Transition metal transport. Fed Eur Biochem Soc Lett 581(12):2263–2272CrossRefGoogle Scholar
  86. Kumar N, Bauddha K, Kumar S, Dwivedi N, Singh DC, Barman SC (2013) Accumulation of metals in weed species grown on the soil contaminated with industrial waste and their phytoremediation potential. Ecol Eng 61:491–495CrossRefGoogle Scholar
  87. Kumar S, Dubey RS, Tripathi RD, Chakrabarty D, Trivedi PK (2015) Omics and biotechnology of arsenic stress and detoxification in plants: current updates and prospective. Environ Int 74:221–230PubMedCrossRefGoogle Scholar
  88. Lane SD, Martin ES (1977) A histochemical investigation of lead uptake in Raphanus sativus. New Phytol 43:231–236Google Scholar
  89. Lee M, Lee K, Lee J, Noh EW, Lee Y (2005) AtPDR12 contributes to lead resistance in Arabidopsis. Plant Physiol 138(2):827–836PubMedPubMedCentralCrossRefGoogle Scholar
  90. Lerch K (1980) Copper metallothionein, a copper binding protein from Neurospora crassa. Nature (London) 284:368–370Google Scholar
  91. Lewis S, Donkin ME, Depledge MH (2001) Hsp70 expression in Enteromorpha intestinalis (Chlorophyta) exposed to environmental stressors. Aquat Toxicol 51:277–291PubMedCrossRefGoogle Scholar
  92. Loneragan JF (1988) Distribution and movement of manganese in plants. In: Hannam RJ, Uren NC, Graham RD (eds) Manganese in soils and plants. Kluwer, Dordrecht, pp 113–124CrossRefGoogle Scholar
  93. Lu K, Yang X, Shen J, Robinson B, Huang H, Liu D, Bolan N, Pei J, Wang H (2014) Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agric Ecosyst Environ 191:124–132CrossRefGoogle Scholar
  94. Mahmood T, Islam KR (2006) Response of rice seedlings to copper toxicity and acidity. J Plant Nutr 29:943–957CrossRefGoogle Scholar
  95. Margoshes M, Vallee BL (1957) A cadmium protein from equinr kidney cortex. J Am Chem Soc 79(17):4813–4814CrossRefGoogle Scholar
  96. Masion A, Bertsch PM (1997) Aluminium speciation in the presence of wheat root cell walls: a wet chemical study. Plant Cell Environ 20:504–512CrossRefGoogle Scholar
  97. McIntyre T (2003) Phytoremediation of heavy metals from soils. In: Springer T (ed) Advances in biochemical engineering/biotechnology, vol 78. Springer, Heidelberg, pp 97–123Google Scholar
  98. Meharg AA, Macnair MR (1992) Suppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L. J Exp Bot 43:519–524CrossRefGoogle Scholar
  99. Mejare M, Bulow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19:67–73PubMedCrossRefGoogle Scholar
  100. Mildvan AS (1970) Metal in enzymes catalysis. In: Boyer DD (ed) The enzymes, vol 11. Academic, London, pp 445–536Google Scholar
  101. Miller RJ, Koeppe DE (1971) Accumulation and physiological effects of lead in corn. In: Proceedings of University of Missouri, Columbia 4: 186–193Google Scholar
  102. Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65:1027–1039PubMedCrossRefGoogle Scholar
  103. Miteva E (2002) Accumulation and effect of arsenic in tomatoes. Commun Soil Sci Plant Anal 33(11):1917–1926CrossRefGoogle Scholar
  104. Mohanpuria P, Rana NK, Yadav SK (2007) Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze. Environ Toxicol 22:368–374PubMedCrossRefGoogle Scholar
  105. Molassiotis A, Sotiropoulos T, Tanou G, Diamantidis G, Therios I (2006) Boron induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM9 (Malus domestica Borkh). Environ Exp Bot 56:54–62CrossRefGoogle Scholar
  106. Monni S, Salemma M, Millar N (2000) The tolerance of empetrum nigrum to copper and nickel. Environ Pollut 109:221–229PubMedCrossRefGoogle Scholar
  107. Morel JL, Mench M, Guchert A (1986) Measurement of Pb2+, Cu2+ and Cd2+ binding with mucilage exudates from maize (Zea mays L.) roots. Biol Fertil Soil 2(1):29–34CrossRefGoogle Scholar
  108. Moreno-Caselles J, Moral R, Pera-Espinosa A, Marcia MD (2000) Cadmium accumulation and distribution in cucumber plants. J Plant Nutr 23:243–250CrossRefGoogle Scholar
  109. Morzck E Jr, Funicclli NA (1982) Effect of lead and on germination of Spartina alterniflora losiel seeds at various salinities. Environ Exp Bot 22:23–32CrossRefGoogle Scholar
  110. Murphy A, Taiz L (1995) Comparison of metallothionein gene expression and nonprotein thiols in ten arabidopsis ecotypes correlation with copper tolerance. Plant Physiol 109:945–954PubMedPubMedCentralCrossRefGoogle Scholar
  111. Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216CrossRefGoogle Scholar
  112. Nakazawa R, Kameda Y, Ito T, Ogita Y, Michihata R, Takenaga H (2004) Selection and characterization of nickel tolerant tobacco cells. Biol Plant 48:497–502CrossRefGoogle Scholar
  113. Neelima P, Reddy KJ (2002) Interaction of copper and cadmium with seedlings growth and biochemical responses in Solanum melongena. Environ Pol Technol 1:285–290Google Scholar
  114. Nieboer E, Richardson DHS (1980) The replacement of the nondescript term heavy metals by a biologically and chemistry significant classification of metal ions. Environ Poll B 1:3–26CrossRefGoogle Scholar
  115. Oehlkers F (1953) Chromosomal breaks influenced by chemicals. Heredity 6:95–105Google Scholar
  116. Pandey N, Sharma CP (2002) Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci 163:753–758CrossRefGoogle Scholar
  117. Parida BK, Chhibba IM, Nayyar VK (2003) Influence of nickel contaminated soils on fenugreek (Trigonella corniculata L.) growth and mineral composition. Sci Hortic 98:113–119CrossRefGoogle Scholar
  118. Parr PD, Taylor FG Jr (1982) Germination and growth effects of hexavalent chromium in Orocol TL (a corrosion inhibitor) on Phaseolus vulgaris. Environ Int 7:197–202CrossRefGoogle Scholar
  119. Peralta JR, Gardea Torresdey JL, Tiemann KJ, Gomez E, Arteaga S, Rascon E (2001) Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa) L. Bull Environ Cont Toxicol 66:727–734Google Scholar
  120. Peralta-Videa JR, Lopez ML, Narayana M, Saupea G, Gardea-Torresdeya J (2009) The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Int J Biochem Cell Biol 41:1665–1677PubMedCrossRefGoogle Scholar
  121. Piechalak A, Tomaszewska B, Baralkiewicz D, Malecka A (2002) Accumulation and detoxification of lead ions in legumes. Phytochem 60:153–162CrossRefGoogle Scholar
  122. Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011) Lead uptake, toxicity and detoxification in plants. Rev Environ Contam Toxicol 213:113–136PubMedGoogle Scholar
  123. Rao KVM, Sresty TVS (2000) Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L). Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–128CrossRefGoogle Scholar
  124. Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229Google Scholar
  125. Rizwan M, Ali S, Adrees M et al (2016) Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environ Sci Pollut Res. doi: 10.1007/s11356-016-6436-4 Google Scholar
  126. Ros R, Cook DT, Picazo C, Martinez-Cortina I (1992) Nickel and cadmium-related changes in growth, plasma membrane lipid composition, atpase hydrolytic activity and proton pumping of rice (Oryza sativa L. cv. Bahia) Shoots. J Exp Bot 43:1475–1481CrossRefGoogle Scholar
  127. Rosas I, Carbajal ME, Gomez-Arroyo S, Belmont R, Villalogos-Pietrini R (1984) Cytogenic effects on cadmium accumulation on water hyacinth (Eichornia crassipes). Environ Res 33:386–395PubMedCrossRefGoogle Scholar
  128. Rudakova EV, Karakis KD, Sidorshina ET (1988) The role of plant cell walls in the uptake and accumulation of metal ions. Fiziol Biochim Kult Rast 20:3–12Google Scholar
  129. Ryvolova M, Krizkova S, Adam V, Beklova M, Trnkova L, Hubalek J, Kizek R (2011) Analytical methods for metallothionein detection. Curr Anal Chem 7:243–261CrossRefGoogle Scholar
  130. Sakakibara M, Ohmoril Y, Ha NTH, Sano S, Sera K (2011) Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis. Clean Soil Air Water 39(8):735–741CrossRefGoogle Scholar
  131. Salt DE, Rauser WE (1995) Mg ATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301PubMedPubMedCentralCrossRefGoogle Scholar
  132. Samarakoon AB, Rauser WE (1979) Carbohydrate levels and photo-assimilate export from leaves of Phaseolus vulgaris exposed to excess cobalt, nickel, and zinc. Plant Physiol 63:1165–1169PubMedPubMedCentralCrossRefGoogle Scholar
  133. Seregin IV, Ivaniov VB (1997) Histochemical investigation of cadmium and lead distribution in plants. Fiziol Rast Plant Physiol 48:525–533Google Scholar
  134. Seregin IV, Ivaniov VB (2001) Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physiol 48(4):523–544CrossRefGoogle Scholar
  135. Sethy SK, Ghosh S (2013) Effect of heavy metals on germination of seeds. J Nat Sci Biol Med 4(2):272–275PubMedPubMedCentralCrossRefGoogle Scholar
  136. Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753PubMedCrossRefGoogle Scholar
  137. Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14(1):43–50PubMedCrossRefGoogle Scholar
  138. Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52CrossRefGoogle Scholar
  139. Silverberg BA (1976) Cadmium-induced ultrastructural changes in mitochondria of freshwater green algea. Phycologia 15:155–159CrossRefGoogle Scholar
  140. Singh PK, Tewari SK (2003) Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. J Environ Biol 24:107–117PubMedGoogle Scholar
  141. Singh R, Singh DP, Kumar N, Bhargava SK, Barman SC (2010) Accumulation and transcolation of heavy metals in soil and plants from fly ash contamination. Environ Biol 3:421–430Google Scholar
  142. Srivastov RK, Gupta SK, Nýgam KDP, Vasudevan P (1994) Treatment of chromium and nickel in wastewater by using aquatic plants. Water Resour 28(7):1631–1638Google Scholar
  143. Stoeva N, Bineva T (2003) Oxidative changes and photosynthesis in oat plants grown in as-contaminated soil. Bulg J Plant Physiol 29(1–2):87–95Google Scholar
  144. Stoeva N, Berova M, Zlatez Z (2004) Physiological response of maize to arsenic contamination. Biol Plant 47(3):449–452CrossRefGoogle Scholar
  145. Suzuki KT, Someya A, Komada Y, Ogra Y (2002) Roles of metallothionein in copper homeostasis: responses to Cu-deficient diets in mice. J Inorg Biochem 88:173–182PubMedCrossRefGoogle Scholar
  146. Taylor GJ (1991) Current views of the aluminum stress response; the physiological basis of tolerance. Curr Top Plant Biochem Physiol 10:57–93Google Scholar
  147. Thomas F, Malick C, Endreszl EC, Davies KS (1998) Distinct responses to copper stress in the halophyte, Mesembryanthemum crystallium. Physiol Plant 102:360–368CrossRefGoogle Scholar
  148. Tice KR, Parker DR, DeMason DA (1992) Operationally defined apoplastic and symplastic aluminum fractions in root tips of aluminum-intoxicated wheat. Plant Physiol 100(1):309–318PubMedPubMedCentralCrossRefGoogle Scholar
  149. Tomaszewska B, Tukendorf A, Baralkiewicz D (1996) The synthesis of phytochelatins in lupin roots treated with lead ions. Sci Legum 3:206–217Google Scholar
  150. Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25(4):158–165PubMedCrossRefGoogle Scholar
  151. Tripathy BC, Bhatia B, Mohanty P (1981) Inactivation of chloroplast photosynthetic electron-transport activity by Ni2+. Biochim Biophys Acta 638:217–224CrossRefGoogle Scholar
  152. Vatamauniuk OK, Mari S, Lu YP, Rea PA (2000) AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc Natl Acad Sci U S A 96:7110–7115CrossRefGoogle Scholar
  153. Vazques MD, Poschenrieder C, Barcelo J (1987) Chromium (VI) induced structural changes in bush bean plants. Ann Bot 59:427–438Google Scholar
  154. Venugopal B, Luckey TD (1978) Metal toxicity of mammals. Plenum, New YorkGoogle Scholar
  155. Vikram A, Johri T, Tandon PK (2011) Effect of chromium (IV) on growth and metabolism of Spinacia oleracea (Spinach) plants. Res Environ Life Sci 4(3):119–124Google Scholar
  156. Von Rosen G (1954) Mutation induced by actions of localization of cadmium and cadmium binding peptides in tobacco leaves. Plant Pathol 92:1086–1093Google Scholar
  157. Wang JR, Zhao FJ, Meharg AA, Raab A, Feldmann J, Mcgrath SP (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552–1561PubMedPubMedCentralCrossRefGoogle Scholar
  158. Watmough S, Eimer M, Dillon P (2007) Manganese cycling in central Ontario forests: response to soil acidification. Appl Geochem 22:1241–1247CrossRefGoogle Scholar
  159. Wojcik M, Tukiendorf A (2004) Phytochelatin synthesis and cadmium localization in wild type of Arabidopsis thaliana. Plant Growth Regul 44:71–80CrossRefGoogle Scholar
  160. Wu S (1994) Effect of manganese excess on the soybean plant cultivated under various growth conditions. J Plant Nutr 17:993–1003Google Scholar
  161. Yang XE, Jin XF, Feng Y, Islam E (2005) Molecular mechanisms and genetic basis of heavy metal tolerance/hyperaccumulation in plants. J Integr Plant Biol 47(9):1025–1035CrossRefGoogle Scholar
  162. Yang X, Liu J, McGrouther K, Huang H et al (2016) Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environ Sci Pollut Res 23:974–984CrossRefGoogle Scholar
  163. Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189CrossRefGoogle Scholar
  164. Zavala YJ, Duxbury JM (2008) Arsenic in rice: estimating normal levels of total arsenic in rice grain. Environ Sci Technol 42(38):56–60Google Scholar
  165. Zayed AM, Terrey N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249(1):139–156CrossRefGoogle Scholar
  166. Zenk MH (1996) Heavy metal detoxification in higher plants: a review. Gene 179:21–30PubMedCrossRefGoogle Scholar
  167. Zhao FJ, Ma JF, Meharg AA, McGrath MP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794PubMedCrossRefGoogle Scholar
  168. Zhou G, Xu Y, Li J, Yang L, Liu J-L (2006) Molecular analyses of the metallothionein gene family in rice (Oryza sativa L.). J Biochem Mol Biol 39(5):595–606PubMedGoogle Scholar
  169. Zhu Y-G, Ralf K, Tong Y-P (2004) vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation. Trends Plant Sci 9(1):7–9PubMedGoogle Scholar
  170. Zornoza P, Robles S, Martin N (1999) Alleviation of nickel toxicity by ammonium supply to sunflower plants. Plant Soil 208:221–226CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2016

Authors and Affiliations

  • Dhananjay Kumar
    • 1
  • D. P. Singh
    • 1
  • S. C. Barman
    • 2
  • Narendra Kumar
    • 1
    Email author
  1. 1.Department of Environmental ScienceBabasaheb Bhimrao Ambedkar UniversityLucknowIndia
  2. 2.Environmental Monitoring DivisionIndian Institute of Toxicology ResearchLucknowIndia

Personalised recommendations