Skip to main content

Silver Nanoparticle in Agroecosystem: Applicability on Plant and Risk-Benefit Assessment

  • Chapter
  • First Online:
Plant Responses to Xenobiotics

Abstract

Engineered nanomaterials are the major components among the broad range of xenobiotic particles. Nowadays scientists have gained higher attention on environmental nanomaterial exposures to elucidate its effects on natural ecosystem. Most of the studies on nanoparticles are concerned with silver nanoparticle, exhibited wide applications in various fields, i.e., in agricultural field, in biotechnology and bioengineering, in textile industries, in wastewater treatment plants, as well as in cosmetic products. Silver nanoparticle plays a significant role in smart and modern agriculture due to its antimicrobial and pesticidal activity. Along with positive aspects, the possible toxic effects of silver nanoparticle on human and other living organism as well as on environment must not be overlooked. Exposure to silver nanoparticle could exhibit an adverse effect on human cells, causing argyria, liver and kidney damage, respiratory problems, eye irritation, heart problem, etc. The interaction of nanosilver particles (AgNPs) to the plant – soil system – may influence the toxicity in ecologically important bacteria soil biota and other living organisms. So detailed risk-benefit assessment is required to predict the environmental effect of nanosized silver particles (AgNPs) in the foreseeable future.

This particular research review highlighted the insight of nanosilver to assess its applicability on agricultural practices and to understand its possible risk impacts. In this chapter, both two issues, i.e., applicability and risk assessment related to the use of nanosilver in modern agriculture, are studied: (i) silver nanoparticle as antimicrobial, antifungal, pesticidal, and nanofertilizer effect on plants and (ii) in water treatment plant and (iii) risk assessment of the vast use of silver nanoparticle and their entry into the environment on biological life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi E, Milani M, Aval SF et al (2016) Silver nanoparticles: synthesis methods, bio-applications and properties. Crit Rev Microbiol 42:173–180

    CAS  PubMed  Google Scholar 

  • Asharani PV, Sethu S, Vadukumpully S et al (2010) Investigations on the structural damage in human erythrocytes exposed to silver, gold, and platinum nanoparticles. Adv Funct Mater 20:1233–1242

    Article  CAS  Google Scholar 

  • Blaser S, Scheringer M, Macleod M et al (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409

    Article  CAS  PubMed  Google Scholar 

  • Carlson C, Hussan SM et al (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12

    Article  CAS  PubMed  Google Scholar 

  • Chowdappa P, Gowda S (2013) Nanotechnology in crop protection: status and scope. Pest Manag Hortic Ecosyst 19:131–151

    Google Scholar 

  • Chowdappa P, Shivakumar G (2013) Nanotechnology in crop protection: status and cope. Pest Manag Hortic Ecosys 19:131–151

    Google Scholar 

  • Clement JL, Jarrett PS (1994) Antibacterial silver. Met Based Drugs 1:467–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colman BP, Arnaout CL, Anciaux S et al (2013) Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario. PLoS One 8(2):e57189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhakras PA (2011) Nanotechnology applications in water purification and waste water treatment: a review Nanoscience, Engineering and Technology (ICONSET). 2011 International Conference on Date 28–30 Nov 2011, 285–291

    Google Scholar 

  • Elchiguerra JL, Burt JL, Morones JR et al (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6

    Article  Google Scholar 

  • Fabrega J, Luoma SN, Tyler CR et al (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531

    Article  CAS  PubMed  Google Scholar 

  • Faunce T, Watal A (2010) Nanosilver and global public health: international regulatory issues. Nanomedicine 5(4):617–632

    Article  CAS  PubMed  Google Scholar 

  • Franci G, Falanga A, Galdiero S et al (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20:8856–8874

    Article  CAS  PubMed  Google Scholar 

  • Gavanji S, Shams M, Shafagh N et al (2012) Destructive effect of silver nanoparticles on biocontrol agent fungi Trichoderma viride and T. harzianum. Casp J Appl Sci Res 1(12):83–90

    Google Scholar 

  • Gehrke I, Geiser A, Somborn- Schulz A (2015) Innovations in nanotechnology for water treatment. Nanotechnol Sci Appl 8:1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Melendi P, Fernández-Pacheco R, Coronado MJ et al (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101:187–195

    Article  PubMed  Google Scholar 

  • Hänsch M, Emmerling C (2010) Effects of silver nanoparticles on the microbiota and enzyme activity in soil. J Plant Nutr Soil Sci 173:554–558

    Article  Google Scholar 

  • Hawthorne J, Musante C, Sinha SK et al (2012) Accumulation and phytotoxicity of engineered nanoparticles to Cucurbita Pepo. Int J Phytoremediation 14(4):429–442

    Article  CAS  PubMed  Google Scholar 

  • Jayaseelan C, Rahaman AA, Rajkumar G et al (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heart leaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res 109:185–194

    Article  PubMed  Google Scholar 

  • Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043

    Article  CAS  Google Scholar 

  • Kaegi R, Voegelin A, Sinnet B et al (2011) Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ Sci Technol 45:3902–3908

    Article  CAS  PubMed  Google Scholar 

  • Khan MR, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13:214–231

    Article  Google Scholar 

  • Kim MJ, Shin S (2014) Toxic effects of silver nanoparticles and nanowires on erythrocyte rheology. Food Chem Toxicol 67:80–86

    Article  CAS  PubMed  Google Scholar 

  • Kim SW, Jung JH, Lamsal K et al (2012) antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40:53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knee M (1992) Sensitivity of ATPases to silver ions suggests that silver acts outside the plasma membrane to block ethylene action. Phytochemistry 31:1093

    Article  CAS  Google Scholar 

  • Kumari M, Mukherjee A, Chadrasekaran N (2009) Genotoxicity of silver nanoparticle in Allium cepa. Sci Total Environ 407:5243–5246

    Article  CAS  PubMed  Google Scholar 

  • Lamsal K, Kim SW, Jung JH et al (2011) Inhibition effects of silver nanoparticles against powdery mildew on cucumber and pumpkin. Mycobiol 39:26–32

    Article  CAS  Google Scholar 

  • Manimegalai G, Kumar SS, Sharma C (2011) Pesticide mineralization in water using silver nanoparticles. Int J Chem Sci 9:1463–1471

    CAS  Google Scholar 

  • Marimuthu S, Rahuman AA, Rajkumar G et al (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 108:1541–1549

    Article  PubMed  Google Scholar 

  • Min JS, Kim KS, Kim SW et al (2009) Effects of colloidal silver nanoparticles on Sclerotium-forming phytopathogenic fungi. Plant Pathol J 25:376–380

    Article  CAS  Google Scholar 

  • Mondal NK, Chowdhury A, Dey U et al (2014) Green synthesis of silver nanoparticles and its application for mosquito control. Asian Pac J Trop Dis 4:S204–S210

    Article  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A et al (2005) The bactericidal effect of silver nanoparticles. J Nanotechnol 16:2346–2353

    Article  CAS  Google Scholar 

  • Mpenyana-Monyatsi L, Mthombeni NH, Onyango MS et al (2012) Cost-effective filter materials coated with silver nanoparticles for the removal of pathogenic bacteria in groundwater. Int J Environ Res Public Health 9:244–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair S, Pradeep T (2003) Halocarbon mineralization and catalytic destruction by metal nanoparticles. Curr Sci 84:12

    Google Scholar 

  • Panyala NR, Pena Mendez EM, Havel J (2008) Silver or silver nanoparticle: a hazardous treat to the environment and human health? J Appl Med 6:117129

    Google Scholar 

  • Park HJ, Kim SH, Kim HJ (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol 22:295–230

    Article  Google Scholar 

  • Pérez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65:540–545

    Article  PubMed  Google Scholar 

  • Quang Huy T, Quy N van, Anh-Tuan L (2013) Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci and Nanotechnol 4:033001

    Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94:287–293

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  CAS  PubMed  Google Scholar 

  • Rajesh KS,Malarkodi C (2014) In vitro antibacterial activity and mechanism of silver nanoparticles against foodborne pathogens. Bioinorg Chem Appl. Article ID 581890: 10 page

    Google Scholar 

  • Raza MA, Kanwal Z, Rauf A et al (2017) Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials 6(74):1–15

    Google Scholar 

  • Reinsch BC, Levard C, Li Z et al (2012) Sulfidation of silver nanoparticles decreases escherichia coli growth inhibition. Environ Sci Technol 46:6992–7000

    Article  CAS  PubMed  Google Scholar 

  • Rouhani M, Samih MA, Kalantri S (2012) Insecticidal effect of silica and silver nanoparticles on the cowpea seed beetle, Callosobruchus maculatus F (Col: Bruchidae). J Entomol Res 4:297–305

    Google Scholar 

  • Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2:3

    Article  Google Scholar 

  • Samuel U, Guggenbichler JP (2004) Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. Int J Antimicrob Agents 23S1:S75–S78

    Article  Google Scholar 

  • Schlich K, Klawonn T, Terytze K et al (2013) Hazard assessment of a silver nanoparticle in soil applied via sewage sludge. Environ Sci Eur 25:17

    Article  Google Scholar 

  • Silver S, Phung LT (1996) Annu Rev Microbiol 50:753–789

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Singh BK, Yadav SM et al (2015) Applications of nanotechnology in agricultural and their role in disease management. Res J Nanosci Nanotechnol 5:1–5

    Article  Google Scholar 

  • Soni N, Prakash S (2015) Antimicrobial and mosquitocidal activity of microbial synthesized silver nanoparticles. Parasitol Res 114:1023–1030

    Article  PubMed  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    Article  CAS  PubMed  Google Scholar 

  • Stephenson JB (2003) Pesticides on tobacco. Federal activities to assess risks and monitor residues. Report to the ranking minority member, committee on government reform, House of Representatives. GAO-03-485. 50 pp

    Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336

    Article  CAS  PubMed  Google Scholar 

  • Suman TY, Elumali D, Kaleena PK (2013) GCMS analysis of bioactive components and synthesis of silver nanoparticle using Ammannia baccifera aerial extract and its larvicidal activity against malaria and filariasis vectors. Ind Crop Prod 47:239–245

    Article  CAS  Google Scholar 

  • Tsuji K (2001) Microencapsulation of pesticides and their improved handling safety. J Microencapsul 18:137–147

    Article  CAS  PubMed  Google Scholar 

  • Vannini C, Domingo G, Onelli E et al (2013) Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS One 8:1–8

    Article  Google Scholar 

  • Yang Y, Quensen J, Mathieu J et al (2014) Pyrosequencing reveals higher impact of silver nanoparticles than Ag+ on the microbial community structure of activated sludge. Water Res 48:317–325

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Cheng Y, Espinasse B et al (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45:2360–2367

    Google Scholar 

  • Zhou Y, Kong Y, Kundu S et al (2012) Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin. J Nanobiotechnol 10:19

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author Rima Kumari acknowledges Science and Engineering Board (SERB), Department of Science and Technology (DST), New Delhi, for providing DST – Start-Up Young Scientist research grant to the project “Assessing the impact of silver nanoparticles on crop plants V. radiata and Fagopyrum esculentum: morphological, biochemical, genotoxic, and proteomics aspects” (Project F.No. SB/YS/LS-231/2013). We also thank the Head, Department of Environmental Science, BBAU, Lucknow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kumari, R., Singh, D.P. (2016). Silver Nanoparticle in Agroecosystem: Applicability on Plant and Risk-Benefit Assessment. In: Singh, A., Prasad, S., Singh, R. (eds) Plant Responses to Xenobiotics. Springer, Singapore. https://doi.org/10.1007/978-981-10-2860-1_12

Download citation

Publish with us

Policies and ethics