Identifying Lead User in Mass Collaborative Innovation Community: Based on Knowledge Supernetwork

  • Zhihong Li
  • Hongting TangEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 660)


Lead users with advanced demand and innovation capability are those most valuable resources for product development and service innovation. Despite acting as the significant communication platform, the pervasive use of the Internet brings in new challenges to identify valuable users. To identify and analyze those lead users and related knowledge, this paper establishes a knowledge supernetwork model by describing the heterogeneity of agent in mass collaborative innovation community, following an example of a typical community. Based on supernetwork theory, this model has important theoretical implications in the integration of supernetwork method and knowledge management. This study also contributes to providing an insight in recognizing lead users with a visual identification method.


Lead user Knowledge supernetwork Mass collaborative innovation community Knowledge management 



This research is supported by Major Program of National Science Foundation of China (Project No.71090403/71090400), Program for Natural Science Foundation of Guangdong Province, China (2014A030313243), and China Postdoctoral Science Foundation (2016T90788, 2015M582389).


  1. 1.
    Simmons, G.: Marketing to postmodern consumers: introducing the internet chameleon. Eur. J. Mark. 42(3/4), 299–310 (2008)CrossRefGoogle Scholar
  2. 2.
    Jayanti, R.K., Singh, J.: Pragmatic learning theory: an inquiry-action framework for distributed consumer learning in online communities. J. Consum. Res. 36(6), 1058–1081 (2010)CrossRefGoogle Scholar
  3. 3.
    Gloor, P.A.: Swarm Creativity: Competitive Advantage Through Collaborative Innovation Networks. Oxford University Press, Oxford (2005)Google Scholar
  4. 4.
    Von Krogh, G., Von Hippel, E.: The promise of research on open source software. Manag. Sci. 52(7), 975–983 (2006)CrossRefGoogle Scholar
  5. 5.
    Nambisan, S.: Designing virtual customer environments for new product development: toward a theory. Acad. Manag. Rev. 27(3), 392–413 (2002)Google Scholar
  6. 6.
    Yang, B., Liu, W.: Research on lead user identification on the basis of application extending and netnews. Chin. J. Manag. 08(9), 1353–1358 (2011)Google Scholar
  7. 7.
    Von Hippel, E.: Lead users: a source of novel product concepts. Manag. Sci. 32(7), 791–805 (1986)CrossRefGoogle Scholar
  8. 8.
    Morrison, P.D., Roberts, J.H., Midgley, D.F.: The nature of lead users and measurement of leading edge status. Res. Policy 33(2), 351–362 (2004)CrossRefGoogle Scholar
  9. 9.
    Sheng, M., Hartono, R.: An exploratory study of knowledge creation and sharing in online community: a social capital perspective. Total Qual. Manag. Bus. Excellence 26(1–2), 93–107 (2015)CrossRefGoogle Scholar
  10. 10.
    Lou, J., et al.: Contributing high quantity and quality knowledge to online Q&A communities. J. Am. Soc. Inf. Sci. Technol. 64(2), 356–371 (2013)CrossRefGoogle Scholar
  11. 11.
    Park, J.H., et al.: An investigation of information sharing and seeking behaviors in online investment communities. Comput. Hum. Behav. 31, 1–12 (2014)CrossRefGoogle Scholar
  12. 12.
    Tsai, H.-T., Bagozzi, R.P.: Contribution behavior in virtual communities: cognitive, emotional, and social influences. MIS Q. 38(1), 143–163 (2014)Google Scholar
  13. 13.
    Shan, S., et al.: Identifying influential factors of knowledge sharing in emergency events: a virtual community perspective. Syst. Res. Behav. Sci. 30(3), 367–382 (2013)CrossRefGoogle Scholar
  14. 14.
    Jin, J., et al.: Why users contribute knowledge to online communities: an empirical study of an online social Q&A community. Inf. Manag. 52(7), 840–849 (2015)CrossRefGoogle Scholar
  15. 15.
    Fu-ren, L., Hui-yi, H.: Why people share knowledge in virtual communities?: The use of Yahoo! Kimo Knowledge as an example. Internet Res. Electron. Networking Appl. Policy 23(2), 133–159 (2013)CrossRefGoogle Scholar
  16. 16.
    Jin, X.-L., et al.: Why users keep answering questions in online question answering communities: a theoretical and empirical investigation. Int. J. Inf. Manag. 33(1), 93–104 (2013)CrossRefGoogle Scholar
  17. 17.
    Martínez-Torres, M.R., et al.: A text categorisation tool for open source communities based on semantic analysis. Behav. Inf. Technol. 32(6), 532–544 (2013)CrossRefGoogle Scholar
  18. 18.
    Liao, X., Li, Z., Xi, Y.: Modeling and analyzing methods of user-innovation knowledge in enterprise communities based on weighted knowledge network. Syst. Eng. Theor. Pract. 2016(1), 94–105 (2016)Google Scholar
  19. 19.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar
  20. 20.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Zhou, H.-R., Ma, Y.-P., Ma, Y.-Z., et al.: Overview of development of network science. Comput. Eng. Appl. 45(24), 7–10 (2009)MathSciNetGoogle Scholar
  22. 22.
    Newman, M.E.J.: Scientific collaboration networks. I. Network construction and fundamental results. Phys. Rev. E 64(1), 016131 (2001)CrossRefGoogle Scholar
  23. 23.
    Newman, M.E.J.: Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys. Rev. E 64(1), 016132 (2001)CrossRefGoogle Scholar
  24. 24.
    Klemm, K., Eguiluz, V.M.: Highly clustered scale-free networks. Phys. Rev. E 65(3), 036123 (2002)CrossRefGoogle Scholar
  25. 25.
    West, G.B., Brown, J.H., Enquist, B.J.: A general model for the origin of allometric scaling laws in biology. Science 276(5309), 122–126 (1997)CrossRefGoogle Scholar
  26. 26.
    Watts, D.J.: A simple model of global cascades on random networks. Proc. Natl. Acad. Sci. 99(9), 5766–5771 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Cohen, J., Briand, F., Newman, C.: Community Food Webs: Data and Theory. Springer, Heidelberg (2012)zbMATHGoogle Scholar
  28. 28.
    Seufert, A., Von Krogh, G., Bach, A.: Towards knowledge networking. J. Knowl. Manag. 3(3), 180–190 (1999)CrossRefGoogle Scholar
  29. 29.
    Xi, Y.-J., Dang, Y.Z.: The discovery and representation methods of expert domain knowledge based on knowledge network. Syst. Eng. 23(8), 110–115 (2005)Google Scholar
  30. 30.
    Xi, Y.-J., Dang, Y.Z.: Knowledge supernetwork model and its application in organizational knowledge systems. J. Manag. Sci. China 12(3), 12–21 (2009)Google Scholar
  31. 31.
    Xi, Y.-J., Dang, Y.Z.: Method to analyze robustness of knowledge network based on weighted supernetwork model and its application. Syst. Eng. Theor. Pract. 27(4), 134–140 (2007)CrossRefGoogle Scholar
  32. 32.
    Colazo, J.: Performance implications of stage-wise lead user participation in software development problem solving. Decis. Support Syst. 67(C), 100–108 (2014)CrossRefGoogle Scholar
  33. 33.
    Schweisfurth, T.G., Raasch, C.: Embedded lead users—The benefits of employing users for corporate innovation. Res. Policy 44(1), 168–180 (2014)CrossRefGoogle Scholar
  34. 34.
    Franke, N., Hippel, E.A.V., Schreier, M.: Finding commercially attractive user innovation: a test of lead-user theory. J. Prod. Innov. Manag. 23(4), 301–315 (2005)CrossRefGoogle Scholar
  35. 35.
    Marchi, G., Giachetti, C., Gennaro, P.D.: Extending lead-user theory to online brand communities: the case of the community Ducati. Technovation 31(8), 350–361 (2011)CrossRefGoogle Scholar
  36. 36.
    Füller, J., Matzler, K., Hoppe, M.: Brand community members as a source of innovation. J. Prod. Innov. Manag. 25(6), 608–619 (2008)CrossRefGoogle Scholar
  37. 37.
    Jeppesen, L.B., Laursen, K.: The role of lead users in knowledge sharing. Res. Policy 38(10), 1582–1589 (2009)CrossRefGoogle Scholar
  38. 38.
    Hung, C.L., Chou, J.C.L., Shu, K.Y.: Searching for lead users in the context of web 2.0. In: IEEE International Conference on Management of Innovation and Technology, pp. 344–349 (2008)Google Scholar
  39. 39.
    Hippel, E V.: Innovation by User Communities: Learning From Open-Source Software. Mit Sloan Manag. Rev. 42(4), 82–86 (2001)Google Scholar
  40. 40.
    Franke, N., Shah, S.: How communities support innovative activities: an exploration of assistance and sharing among end-users. Res. Policy 32(1), 157–178 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2016

Authors and Affiliations

  1. 1.School of Business AdministrationSouth China University of TechnologyGuangzhouChina

Personalised recommendations