Skip to main content

Formation of Active Ordered Layer on Pt–Rh Catalyst

  • Chapter
  • First Online:
Dynamic Chemical Processes on Solid Surfaces
  • 586 Accesses

Abstract

Pt and Rh are stable metals taking very high melting temperatures (Pt: 1,997 K, Rh: 2,249 K) and they form a random alloy. The Pt and Rh are not so active catalyst for the reaction of NO + H2 → 1/2 N2 + H2O, and the surface of Pt–Rh alloy itself is also not so active for this reaction. However, a Pt0.25Rh0.75(100) alloy surface changes to an extremely active surface in O2 at ca. 400 K, where the alloy surface is transformed from random to an ordered alloy layer with a (3 × 1) structure, and the same active (3 × 1) ordered layer is established on the Pt/Rh(100) and Rh/Pt(100) bimetallic surfaces. Once a (3 × 1) ordered layer is established, which is stable up to ca. 800 K in vacuum. STM image shows that the ordered Pt0.25Rh0.75(100) alloy surface takes a composite array of Pt and (Rh–O) rows in a (3 × 1) array, and the ordered alloy layer can keep up to ca. 800 K. The ordered Pt–Rh alloy layer is a new material being active for the reduction of NO with H2, and the active hybrid ordered alloy layer is an active component of the three-way Pt–Rh catalyst developed for removal of NOx, CO, and hydrocarbons in automobile exhaust gas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K-I. Tanaka, Surf. Sci. 357/358 (1996) 721.

    Google Scholar 

  2. K-I. Tanaka, ACS Symposium Series 656 Solid-Liquid Electrochemical Interfaces, Chapter 18 (1997) 245 –273. Edt. By G. Jerkiewicz, M. P. Soliaga, K. Uosaki, and A. Wieckowski.

    Google Scholar 

  3. H. Tamura and K-I. Tanaka, Langmuir, 10 (1994) 4530.

    Google Scholar 

  4. H. Tamura, A. Sasahara, and K-I. Tanaka, J. Electroanal. Chem.,381 (1995) 95.

    Google Scholar 

  5. M. Taniguchi, E.K. Kuzembaev and K-I. Tanaka, Surf. Sci., 290 (1993) L711.

    Google Scholar 

  6. A. Sasahara, H. Tamura, and K-I. Tanaka, Catal. Lett., 28 (1994) 161.

    Google Scholar 

  7. K-I. Tanaka and A. Sasahara, Interfacial Electrochemistry, Chapt. 28, p 493–512. Ed. By A. Wieckowski, (ISBN: 0-8247-6000-x) Marcel Dekker, Inc., N.Y. and Basel (1999).

    Google Scholar 

  8. K-I. Tanaka, Appl. Catal. A. General, 188 (1999) 37.

    Google Scholar 

  9. J. Siera, F.C.M.J.M. van Delft, A.D. van Langeveld, and B.E. Nieuwenhuys, Surf. Sci., 264 (1992) 435.

    Google Scholar 

  10. T.T. Tsong, D.M. Ren and M. Ahmad Phys. Rev. B38, (1988) 7428.

    Google Scholar 

  11. K-I. Tanaka, ACS Symposium Series 656 Solid-Liquid Electrochemical Interfaces, Chapter 18 (1997) 245–273. Edt. By G. Jerkiewicz, M. P. Soliaga, K. Uosaki, and A. Wieckowski.

    Google Scholar 

  12. Y. Matsumoto, Y. Okawa, T. Fujita and K-I. Tanaka, Surf, Sci. 355 (1996) 109.

    Google Scholar 

  13. T. Yamada, T. Misno, K-I. Tanaka, and Y. Murata, J. Vac. Sci. Technol. A 7(4) (1989) 2808.

    Google Scholar 

  14. A. Sasahara, H. Tamura, and K-I. Tanaka, J. Phys. Chem.,100 (1996) 15229.

    Google Scholar 

  15. H. Kita, S. Ye, A. Aramata, and N. Furuya, J. Electroanal. Chem.,295 (1990) 317.

    Google Scholar 

  16. K. Yamamoto, D. Kolb, R. Kotz, and G. Lehmpfuhl, J. Electroanal. Chem. 96 (1979) 233.

    Google Scholar 

  17. C.L. Scortichini, and C.N. Beilley, J. Electro. Chem., 139 (1982) 233.

    Google Scholar 

  18. Korotkikh D. Amand and J. Clavilier, J. Electroanal. Chem. 233 (1987) 251.

    Google Scholar 

  19. A. Sasahara, H. Tamura, and K-I. Tanaka, J. Phys. Chem., B 101 (1997) 1186.

    Google Scholar 

  20. K-I Tanaka and A. Sasahara, J. Molec. Catal, A Chemicals, 155 (2009) 13.

    Google Scholar 

  21. Y. Matsumoto, Y. Aibara, K. Mukai, K. Moriwaki, Y. Okawa, B.E. Nieuwenhuys and K-I. Tanaka, Surf. Sci. 377/379 (1997) 32.

    Google Scholar 

  22. C. Hardacre, R.M. Ormerod, R.M. Lambert, J. Phys. Chem.,98 (1994) 10901.

    Google Scholar 

  23. S.J. Tauster, S.C. Fung, and R.L. Garten, J. Am. Chem. Soc., 100 (1978) 170.

    Google Scholar 

  24. S. Surnev, J. Schoiswohl, G. Kresse, M.G. Ramsey, and F.P. Netzer, Phys. Lev. Lett., 89 (2002) 24610.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Tanaka .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Tanaka, Ki. (2017). Formation of Active Ordered Layer on Pt–Rh Catalyst. In: Dynamic Chemical Processes on Solid Surfaces. Springer, Singapore. https://doi.org/10.1007/978-981-10-2839-7_9

Download citation

Publish with us

Policies and ethics