Skip to main content

Dynamic Chemical Processes in Catalysis

  • Chapter
  • First Online:

Abstract

In conventional thinking, catalytic activity of metals is tacitly considered as an intrinsic property of metals such that Pt is active, but Au is inactive. On the other hand, we know experimentally and theoretically that the adsorption bond of molecules on metals takes perturbation of additives. Based on them, the role of promoting materials is so often explained by the term “synergetic effect” or “activation of metals,” but this is awkward explanation as proved in “selective oxidation of CO in H2 improved by H2O” mentioned in Sect. 10.4. I could say that true mechanism of catalysis is difficult to deduce without clarifying the dynamics of chemical processes including the roles of active sites or active materials on the surface. One important strategy to make clear the mechanism of catalysis is how to remove unnecessary migration of intermediates on the surface during catalysis. One prominent example is the “hydrogenation of olefins” and simultaneously catalyzed isomerization of olefins. As proved in Sects. 10.1 and 10.2, the two reactions are evidently distinguished by preventing unnecessary migration of H atoms over the catalyst. Another example is the “selective oxidation of CO in H2 improved by H2O” on a Pt/CNT catalyst discussed in Sect. 10.4, on which the migration of OH ion from promoting materials to Pt and Au particles is indispensable process. “Metathesis reaction of olefins” is another type of dynamic processes as mentioned in Sect. 10.3. That is, the metathesis reaction of α-olefins (CH2=CHR) is catalyzed by alternative reaction of olefin with two active intermediates, Mo=CH2 and Mo=CHR. However, the hidden metathesis reaction named “degenerate metathesis” proceeds on each Mo=CH2 and Mo=CHR sites. Interestingly, this degenerate metathesis of propene, CH2=CH−CH3 + CD2=CD−CD3 → CD2=CH−CH3 + CH2=CD−CD3, on the Mo=CH–CH3 sites takes place 100–900 times more frequently compared to that on the Mo=CH2 sites. These practical reactions prove that the catalysis cannot be rationalized without clarifying the dynamic chemical processes on the surface.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. Horiuti and M. Polanyi, Trans. Farad. Soc., 30 (1934) 1164.

    Google Scholar 

  2. K-I. Tanaka, Adv. in Catalysis., Vol. 33, 99–158 (1985).

    Google Scholar 

  3. K-I. Tanaka and T. Okuhara, Catal. Rev. Sci. and Eng. 15 (2) (1977) 249.

    Google Scholar 

  4. E. Nishimuyra, Y. Inoue, and I. Yasumori, Bull. Chem. Soc. Jpn., 48 (1975) 803.

    Google Scholar 

  5. T. Okuhara, K-I. Tanaka, and T. Miyahara, J.C.S. Chem. Comm. (1976) 42.

    Google Scholar 

  6. M. Wilde, K. Fukutani, W. Ludwig, B. Brandt, J-H. Fischer, S. Schauermann, and H-J. Freund, Angew. Chem. Int. Ed. 47 (2008) 9289.

    Google Scholar 

  7. A. Takeuchi, K-I. Tanaka, and K. Miyahara, J. Catal., 40 (1975) 94.

    Google Scholar 

  8. A. Takeuchi, K-I. Tanaka, and K. Miyahara, J. Catal., 40 (1975) 101.

    Google Scholar 

  9. K-I. Tanaka and T. Okuhara, J. Catal., 78 (1982) 155.

    Google Scholar 

  10. T. Okuhara and K-I. Tanaka, JCS., Faraday Trans. I. 75 (1979) 1403.

    Google Scholar 

  11. T. Okuhara and K-I. Tanaka, J. Phys. Chem.,82 (1978) 1953.

    Google Scholar 

  12. T. Okuhara and K-I. Tanaka, JCS, Faraday Trans. I, 75 (1979) 7.

    Google Scholar 

  13. T. Okuhara and K-I. Tanaka, J. Am. Chem. Soc. 98 (1976) 7884.

    Google Scholar 

  14. K-I. Tanaka, T. Okuhara, T. Sato, and K. Miyahara, J. Catal.,43 (1976) 360.

    Google Scholar 

  15. T. Okuhara, K-I. Tanaka and K. Tanabe, Chem. Comm. (1977) 180.

    Google Scholar 

  16. T. Okuhara and K-I. Tanaka, JCS, Chem. Comm. (1976) 199.

    Google Scholar 

  17. T. Okuhara, T. Kondo, K-I. Tanaka, and K. Miyahara, J. Phys. Chem., 81 (1977) 90.

    Google Scholar 

  18. B. Bogdanovic, B. Henc, H-G. Mussel, D. Walter and G. Wilke, Ind. Eng. Chem., 62 (12) (1970) 34.

    Google Scholar 

  19. K-I. Tanaka, T. Okuhara, K. Aomura, and K. Miyahara, JCS, Faraday Trans. I, 77 (1981) 1697.

    Google Scholar 

  20. S. Naito, Y. Sakurai, H. Shimizu, T. Onishi, and K. Tamaru, Trans. Faraday Soc., 67 (1971) 1529.

    Google Scholar 

  21. R.I. Burwell, Jr., A.B. Littlewood, M. Cardew, G. Pass and C.T.H. Stoddart, J. Am. Chem. Soc., 82 (1960) 6272.

    Google Scholar 

  22. K-I. Tanaka, H. Nihira, and A. Ozaki, J. Phys. Chem., 74 (1970) 4510.

    Google Scholar 

  23. Y. Yamaguchi and J. Hightower, J. Am. Chem. Soc., 99 (1976) 4201.

    Google Scholar 

  24. Y. Imizu, K. Tanabe and H. Hattori, J. Catalysis, 56 (1979 ) 303.

    Google Scholar 

  25. H. Hattori, Y. Tanaka and K. Tanabe, J. Am. Chem. Soc., 98 (1976) 4652.

    Google Scholar 

  26. K-I. Tanaka and T. Okuhara, J. Catalysis, 65 (1980) 1.

    Google Scholar 

  27. P. Eishens, W.A. Pliskin and M.S.D. Low, J. Catal., 1 (1962) 180.

    Google Scholar 

  28. R.J. Kokes, A.L. Dent, C.C. Chang and L.T. Dixon, J. Am. Chem. Soc., 94 (1972) 4429.

    Google Scholar 

  29. A.L. Dent and R.J. Kokes, J. Am. Chem. Soc.,92 (1970) 6709, ibid, 92 (1970) 6718.

    Google Scholar 

  30. R.L. Banks and G.C. Bailey, Ind. Eng. Chem., Prod. Res. Dev., 3 (1964) 170.

    Google Scholar 

  31. J.L. Herisson and Y. Chauvin, Makromol. Chem. 141 (1971) 161.

    Google Scholar 

  32. K-I. Tanaka, Appl. Catal. A. General, 188 (1999) 37.

    Google Scholar 

  33. J. Kress, W. Wesolek, and J.A. Osborn, J.C.S., Chem. Comm., (1982) 514.

    Google Scholar 

  34. M. Scholl, S. Ding, C.W. Lee, and R.H. Grubbs, Org. Lett. 1 (1999) 953.

    Google Scholar 

  35. J. Hung, E.D. Stevens, S.P. Nolan, J.L. Petersen, J. Am. Chem. Soc., 121 (1999) 2674.

    Google Scholar 

  36. K. Tanaka, K-I. Tanaka, and K. Miyahara, J.C.S. Chem. Comm. (1980) 666.

    Google Scholar 

  37. M. Kazuta and K-I. Tanaka, J.C.S. Chem. Comm. (1987) 616.

    Google Scholar 

  38. K. Tanaka and K-I. Tanaka, J.C.S. Chem. Comm. (1984) 748.

    Google Scholar 

  39. M. Kazuta and K-I. Tanaka, J. Catal., 123 (1988) 164.

    Google Scholar 

  40. C.J. Scaverian, J.C. Dewan, and R.R. Schrock, J. Am. Chem. Soc., 108 (1986) 2771.

    Google Scholar 

  41. J.B. Lee, G.J. Gajda, W.P. Schaefer, T.R. Haward, T. Ikariya, D.A. Straus, and R.H. Grubbs, J. Am. Chem. Soc., 103 (1981) 7358.

    Google Scholar 

  42. K. Tanaka, K-I. Tanaka, H. Takeo, and Chi Matsumura, J. Am. Chem. Soc., 109 (1987) 2422.

    Google Scholar 

  43. G. W. Keulks, J. Catalysis, 19 (1970) 232.

    Google Scholar 

  44. W. Ueda, Y. Moro-oka, T. Ikawa, J. Catalysis, 70 (1981) 409.

    Google Scholar 

  45. W. Ueda, Y. Moro-oka, T. Ikawa, J. Catalysis, 88 (1984) 214.

    Google Scholar 

  46. M. W. J. Wolf and Ph.A. Batist, J. Catalysis, 32 (1974) 25.

    Google Scholar 

  47. G. Vlaic, P. Vornasiero, S. Geremia, J. Kaspar, and M. Graziani, J. Catal., 168 (1997) 386.

    Google Scholar 

  48. A. Kato, S. Matsuda, F. Nakajima, M. Imanari, and Y. Watanabe, J. Phys. Chem., 85 (1981) 1710.

    Google Scholar 

  49. A. Kato, S. Matsuda, T. Kamo, F. Nakajima, H. Kuroda, and T. Narita, J. Phys. Chem., 85 (1981) 4099.

    Google Scholar 

  50. A. Golchet and J.M. White, J. Catal. 53 (1978) 266.

    Google Scholar 

  51. N. Al-Sarraf, J.T. Stuckless and D.A. King, Nature, 360 (1992) 243.

    Google Scholar 

  52. G. Blyholder, J. Phys. Chem., 68 (1964) 2772.

    Google Scholar 

  53. X. Lin et al, J. Am. Chem. Soc. 132 (2010) 7745.

    Google Scholar 

  54. X. Liu, O. Korotkikh, R. Farrauto, Appl. Catal., A. General, 226 (2002) 293.

    Google Scholar 

  55. O. Korotkikh and R. Farrauto, Catal. Today, 62 (2000) 249.

    Google Scholar 

  56. K-I. Tanaka, M. Shou, Hong He, and X. Shi, Catal. Letters, 110 (2006) 185.

    Google Scholar 

  57. K. Tamaru, Dynamic Heterogeneous Catalysis, Academic Press, London, New York, San Francisco (1978).

    Google Scholar 

  58. M. Show, K-I. Tanaka, K. Yoshioka, Y. Moro-oka, and S. Nagano, Catal. Today, 90 (1904) 255.

    Google Scholar 

  59. K-I. Tanaka, M. Show, Hong He, X. Shi, and X. Zhang, J. Phys. Chem., C, 113 (2009) 12427.

    Google Scholar 

  60. A. Fukuoka and M. Ichikawa, Topics in Catal. 40 (2006) 103.

    Google Scholar 

  61. K-I. Tanaka, M. Shou, and Y.Yuan, J. Phys. Chem., C 114 (2010) 16917.

    Google Scholar 

  62. Y. Zhai, D. Pierre, R. Si, W. Deng, P. Ferrin, A.U Nilekar, G. Peng, J. A. Herron, D.C. Bell, H. Saltsburg, N. Mavrikakis and M.F. Stephanopoulos, Science 329 (2010) 1633.

    Google Scholar 

  63. Q. Fu, H. Saltsburg, and M. Flytzani- Stephanopoulos, Science, 301 (2003) 935.

    Google Scholar 

  64. M. Yang, S. Li, Y. Wang, J.A. Hrron, Y. Xu, L.F. Allard, S. Lee, J. Huang, M. Mavrikakis, and M.F. Stephanopoulos, Science (2014) 1260526.

    Google Scholar 

  65. C. Zhang, F. Liu, Y. Zhai, H. Ariga, N. Yi, Y. Liu, K. Asakura, M. Flytzani-Stephanopoulos and Hong He, Angew. Chem. Int. 51 (2012) 9628.

    Google Scholar 

  66. Y. Zhang, S. Anderson, and M. Muhammaed, Appl. Catal., B6 (1995) 325.

    Google Scholar 

  67. M. Haruta, Catal. Today, 36 (1997) 153.

    Google Scholar 

  68. M. Haruta,N.Yamada,T. Kobayashi, and S. Iijima, J. Catal. 115 (1989) 301.

    Google Scholar 

  69. M.S. Chen and D.W. Goodman, Science,306 (2004) 252.

    Google Scholar 

  70. C. Hardacre, R.M. Ormerod, R.M. Lambert, J. Phys. Chem.,98 (1994) 10901.

    Google Scholar 

  71. S.Yokoyama, K-I. Tanaka, and M. Seisho, JCS. Chem. Comm. (1981) 1061.

    Google Scholar 

  72. G.J. Hutchings, M.S. Hall, A.F. Carley, P. London, B.E. Solsona, C.J. Kiely, A. Herzing, M. Makkee, J.A. Moulijn, A. Overweg, J.C. Fierro-Gonzalez, J. Guzman, and B.C. Gates, J. Catal., 242 (2006) 71.

    Google Scholar 

  73. Chao Wang, Guangquan Yi, Haiqiang Lin, and Youzhu Yuan, Inter. J. of Hydrogen Energy, 37 (2012) 14124.

    Google Scholar 

  74. M. Shou and K-I. Tanaka, Catal. Letters, 111 (2006) 115.

    Google Scholar 

  75. M. Shou, H. Takekawa, D-Y. Ju, T. Hagiwara, Daling Lu, and K-I. Tanaka, Catal. Letters. 108 (2006) 119.

    Google Scholar 

  76. C.K. Costello, J.H. Yang, H.Y. Law, Y. Wang, J.N. Lin, L.D. Marks, M.C. Kung and H.H. Kung, Appl. Catal. A. General 243 (2003) 15.

    Google Scholar 

  77. G. Yi, Z. Xu, G. Guo, K-I. Tanaka and Y. Yuan, Chem. Phys. Lett. 479 (2009) 128.

    Google Scholar 

  78. K-I. Tanaka, Hong He, and Y. Yuan, RSC, Advances, 5 (2015) 949.

    Google Scholar 

  79. K-T. Tanaka, Hong He, M. Shou, X. Shi, Catal. Today, 175 (2011) 467.

    Google Scholar 

  80. X. Shi, K-I. Tanaka, Hong. He, M. Shou, W. Xu, and X. Zhang, Catal. Lett., 120 (2008) 210.

    Google Scholar 

  81. A. Ueno, T. Onishi, and K. Tamaru, Trans. Farad. Soc.,67 (197193585).

    Google Scholar 

  82. G.Y. Popova, Y.A. Chesalov, T.V. Andnishkevich, I.I. Zhkhalov, and E.S. Stoyanov, J. Mpl. Catal. A, 158 (2000) 345.

    Google Scholar 

  83. G. J. Millar, C.H. Rochester and K.C. Waugh, J. Catal. 155 (1995) 52.

    Google Scholar 

  84. C. Adamo and V. Barone, J. Chem. Phsy. 108 (1998) 664.

    Google Scholar 

  85. Z. Chang and G.Thornton, Surf. Sci., 459 (2000) 303.

    Google Scholar 

  86. C. Zhang, Hong He, and K-I. Tanaka, Appl. Catal. B, 65 (2006) 37.

    Google Scholar 

  87. J. Rasko, T. Kecskers, and J. Kiss, J. Catal. 224 (2004)261.

    Google Scholar 

  88. M. Yamada, D. Li, I. Honma, and H. Zhou, J. Am. Chem. Soc. 127 (2005) 13092.

    Google Scholar 

  89. J.L. Lu, H. Tang, S. Lu, H. Wu, and S. Ping Jiang, J. Mater. Chem., 21 (2011) 6668.

    Google Scholar 

  90. G. Yi, H. Yang, B. Li, H. Lin, K-I. Tanaka and Y. Yuan, Catal. Today, 157 (2010) 83.

    Google Scholar 

  91. R.B. Levy and M. Boudart, J. Catalysis, 32 (1974) 364.

    Google Scholar 

  92. Y. Okawa and K-I. Tanaka, Surf. Sci., 344 (1995) 1207.

    Google Scholar 

  93. Y. Okawa and K-I. Tanaka, Appl. Phys. Lett., 70 (1997) 3371.

    Google Scholar 

  94. F. Basolo and R.G. Pearson, Mechanism of Inorganic Solution, John Wiley & Sons, Inc. New York (1958).

    Google Scholar 

  95. K-I. Tanaka, Bull. Chem Soc. Japan, 46 (1973) 3887.

    Google Scholar 

  96. K-I. Tanaka and A. Ozaki, J. Catal. 8 (1967) 1.

    Google Scholar 

  97. R.P. Iczkowski and J.L. Magrave, J. Am. Chem. Soc., 83 (1962) 3547.

    Google Scholar 

  98. A.Boffa, C. Lin, A.T. Bell, and G.A. Somorjai, J. of Catal. 149 (1994) 149.

    Google Scholar 

  99. N.A. Hodge, C.J. Kiely, R. Whyman, M.R.H. Siddiqui, G.J. Hutchings, Q.A. Pankhurst, F.E. Wagner, R.R. Rajaram, and S.E. Golunski, Catal. Today, 72 (2002) 133.

    Google Scholar 

  100. Y. Matsumoto, K. Sakamoto, Y. Okawa, S. Suto,and K-I. Tanaka, J. Chem. Phys., 107 (1997) 1.

    Google Scholar 

  101. S.T. Daniells, M. Kallee and J.A. Moulijn, J. Catal. 100 (2005) 39.

    Google Scholar 

  102. M.A. Bollinger and M.A. Vannice, Appl. Catal. B, 8 (1996) 417.

    Google Scholar 

  103. Y-N. Sun, Z-H. Qin, M. Lewndowski, E. Carrasco, M. Sterrer, S. Shaikhutdinov, and H.J. Freund, J. Catalysis, 266 (2009) 359.

    Google Scholar 

  104. Y-N. Sun, L. Giordano, J. Goniakowski, M. Lewandowski, Z-H. Qin, C. Noguera, S. Shaikhutdinov, G. Pacchioni, and H-J. Freund, Angew. Chem. 122 (2010) 4520.

    Google Scholar 

  105. C.K. Costello, M.C. Kung, H-S. Oh, Y. Wang, and H.H. Hung, Appl. Catal. A: General 232 (2002)159.

    Google Scholar 

  106. M.D. Kolb, G. Lehmpfuhl, and M.S. Zei, J. Electroanal. Chem., 179 (1984) 289.

    Google Scholar 

  107. G. Smit, N. Strukan, M.W.J. Craje, and K. Lazar, Appl. Catal. A: General 252 (2006)163.

    Google Scholar 

  108. J.L. Ayastuy, M.P. Gonzalez-Marcos, J.R. Gonzalez-Velasaaco, and M.A. Gutierrez-Ortiz, Appl. Catal., B 70 (2007) 532.

    Google Scholar 

  109. Se H. Oh, and R.M. Sinkevitch, J. Catal. 142 (1993) 254.

    Google Scholar 

  110. S. Alayoglu, A. U. Nilckar, M.Mavrikakis, B. Eichhorn, Nat. Mater. 7 (2008) 333.

    Google Scholar 

  111. K-I. Tanaka, M. Shou, H. Zhang, Y. Yuan, T. Hagiwara, A. Fukuoka, J. Nakamura and Daling Lu, Catal. Letters, 126 (2008) 89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Tanaka .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Tanaka, Ki. (2017). Dynamic Chemical Processes in Catalysis. In: Dynamic Chemical Processes on Solid Surfaces. Springer, Singapore. https://doi.org/10.1007/978-981-10-2839-7_10

Download citation

Publish with us

Policies and ethics