Skip to main content

Pre-Percutaneous Coronary Intervention Lesion Assessment

  • Chapter
  • First Online:
Coronary Imaging and Physiology
  • 1869 Accesses

Abstract

Traditionally, quantitative coronary angiography (QCA) was the major imaging modality to assess the severity of CAD for coronary lesion assessment when coronary artery disease is treated with catheter-based coronary interventions. But only provides lumenogram or shadowgram a planar two-dimensional silhouette of the lumen contains only about 25% of the total coronary blood flow and is unsuitable for the precise assessment of atherosclerosis. Intravascular ultrasound (IVUS) provides a unique real-time, tomographic assessment of coronary artery assessment of lesion characteristics, lumen diameters, cross-sectional area, plaque area, and distribution. Generally coronary angiography underestimates the severity and extent of disease, IVUS is golden standard for accurate evaluation for pre-intervention lesion assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittl JA, Cercek B, Chambers CE, Ellis SG, Guyton RA, Hollenberg SM, Khot UN, Lange RA, Mauri L, Mehran R, Moussa ID, Mukherjee D, Nallamothu BK, Ting HH, American College of Cardiology Foundation, American Heart Association Task Force on Practice Guidelines, Society for Cardiovascular Angiography and Interventions. 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. J Am Coll Cardiol. 2011;58:44–122.

    Article  Google Scholar 

  2. Authors/Task Force Members, Windecker S, Kolh P, Alfonso F, Collet JP, Cremer J, Falk V, Filippatos G, Hamm C, Head SJ, Jüni P, Kappetein AP, Kastrati A, Knuuti J, Landmesser U, Laufer G, Neumann FJ, Richter DJ, Schauerte P, Sousa Uva M, Stefanini GG, Taggart DP, Torracca L, Valgimigli M, Wijns W, Witkowski A. 2014 ESC/EACTS guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2014;35:2541–619.

    Article  Google Scholar 

  3. Pijls NH, Sels JW. Functional measurement of coronary stenosis. J Am Coll Cardiol. 2012;59:1045–57.

    Article  PubMed  Google Scholar 

  4. Takagi A, Tsurumi Y, Ishii Y, et al. Clinical potential of intravascular ultrasound for physiological assessment of coronary stenosis: relationship between quantitative ultrasound tomography and pressure-derived fractional flow reserve. Circulation. 1999;100:250–5.

    Article  CAS  PubMed  Google Scholar 

  5. Briguori C, Anzuini A, Airoldi F, et al. Intravascular ultrasound criteria for the assessment of the functional significance of intermediate coronary artery stenoses and comparison with fractional flow reserve. Am J Cardiol. 2001;87:136–41.

    Article  CAS  PubMed  Google Scholar 

  6. Lee CH, Tai BC, Soon CY, et al. New set of intravascular ultrasound-derived anatomic criteria for defining functionally significant stenoses in small coronary arteries (results from intravascular ultrasound diagnostic evaluation of atherosclerosis in Singapore [IDEAS] study). Am J Cardiol. 2010;105:1378–84.

    Article  PubMed  Google Scholar 

  7. Kang SJ, Lee JY, Ahn JM, et al. Validation of intravascular ultrasound-derived parameters with fractional flow reserve for assessment of coronary stenosis severity. Circ Cardiovasc Interv. 2011;4:65–71.

    Article  PubMed  Google Scholar 

  8. Kang SJ, Ahn JM, Song H, et al. Usefulness of minimal luminal coronary area determined by intravascular ultrasound to predict functional significance in stable and unstable angina pectoris. Am J Cardiol. 2012;109:947–53.

    Article  PubMed  Google Scholar 

  9. Ben-Dor I, Torguson R, Gaglia MA Jr, et al. Correlation between fractional flow reserve and intravascular ultrasound lumen area in intermediate coronary artery stenosis. EuroIntervention. 2011;7:225–33.

    Article  PubMed  Google Scholar 

  10. Ben-Dor I, Torguson R, Deksissa T, et al. Intravascular ultrasound lumen area parameters for assessment of physiological ischemia by fractional flow reserve in intermediate coronary artery stenosis. Cardiovasc Revasc Med. 2012;13:177–82.

    Article  PubMed  Google Scholar 

  11. Koo BK, Yang HM, Doh JH, et al. Optimal intravascular ultrasound criteria and their accuracy for defining the functional significance of intermediate coronary stenoses of different locations. J Am Coll Cardiol Intv. 2011;4:803–11.

    Article  Google Scholar 

  12. Waksman R, Legutko J, Singh J, et al. FIRST: fractional flow reserve and intravascular ultrasound relationship study. J Am Coll Cardiol. 2013;61:917–23.

    Article  PubMed  Google Scholar 

  13. Stone GW. VERDICT/FIRST: prospective, multicenter study examining the correlation between IVUS and FFR parameters in intermediate lesions. Available at https://www.tctmd.com/slide/verdictfirst-prospective-multicenter-study-examining-correlation-between-ivus-and-ffr. 2013.

  14. Kang SJ, Ahn JM, Han S, et al. Sex differences in the visual-functional mismatch between coronary angiography or intravascular ultrasound versus fractional flow reserve. J Am Coll Cardiol Intv. 2013;6:562–8.

    Article  Google Scholar 

  15. Abizaid A, Mintz GS, Pichard AD, Kent KM, Satler LF, Walsh CL, Popma JJ, Leon MB. Clinical, intravascular ultrasound, and quantitative angiographic determinants of the coronary flow reserve before and after percutaneous transluminal coronary angioplasty. Am J Cardiol. 1998;82:423–8.

    Article  CAS  PubMed  Google Scholar 

  16. Nishioka T, Amanullah AM, Luo H, Berglund H, Kim CJ, et al. Clinical validation of intravascular ultrasound imaging for assessment of coronary stenosis severity: comparison with stress myocardial perfusion imaging. J Am Coll Cardiol. 1999;33:1870–8.

    Article  CAS  PubMed  Google Scholar 

  17. Abizaid AS, Mintz GS, Mehran R, Abizaid A, Lansky AJ, et al. Long-term follow-up after percutaneous transluminal coronary angioplasty was not performed based on intravascular ultrasound findings: importance of lumen dimensions. Circulation. 1999;100:256–61.

    Article  CAS  PubMed  Google Scholar 

  18. Lotfi A, Jeremias A, Fearon WF, Feldman MD, Mehran R, Messenger JC, Grines CL, Dean LS, Kern MJ, Klein LW, Society of Cardiovascular Angiography and Interventions. Expert consensus statement on the use of fractional flow reserve, intravascular ultrasound, and optical coherence tomography: a consensus statement of the Society of Cardiovascular Angiography and Interventions. Catheter Cardiovasc Interv. 2014;83(4):509–18.

    Article  PubMed  Google Scholar 

  19. Sano K, Mintz GS, Carlier SG, de Ribamar Costa J Jr, Qian J, Missel E, Shan S, Franklin-Bond T, Boland P, Weisz G, Moussa I, Dangas GD, Mehran R, Lansky AJ, Kreps EM, Collins MB, Stone GW, Leon MB, Moses JW. Assessing intermediate left main coronary lesions using intravascular ultrasound. Am Heart J. 2007;154:983–8.

    Article  PubMed  Google Scholar 

  20. Jasti V, Ivan E, Yalamanchili V, Wongpraparut N, Leesar MA. Correlations between fractional flow reserve and intravascular ultrasound in patients with an ambiguous left main coronary artery stenosis. Circulation. 2004;110:2831–6.

    Article  PubMed  Google Scholar 

  21. de la Torre Hernandez JM, Hernandez Hernandez F, Alfonso F, Rumoroso JR, Lopez-Palop R, et al. Prospective application of pre-defined intravascular ultrasound criteria for assessment of intermediate left main coronary artery lesions results from the multicenter LITRO study. J Am Coll Cardiol. 2011;58:351–8.

    Article  PubMed  Google Scholar 

  22. Park SJ, Ahn JM, Kang SJ, et al. Intravascular ultrasound-derived minimal lumen area criteria for functionally significant left main coronary artery stenosis. JACC Cardiovasc Interv. 2014;7:868–74.

    Article  PubMed  Google Scholar 

  23. Kang SJ, Lee JY, Ahn JM, Song HG, Kim WJ, et al. Intravascular ultrasound-derived predictors for fractional flow reserve in intermediate left main disease. JACC Cardiovasc Interv. 2011;4:1168–74.

    Article  PubMed  Google Scholar 

  24. Mintz GS, Popma JJ, Pichard AD, Kent KM, Satler LF, Chuang YC, Ditrano CJ, Leon MB. Patterns of calcification in coronary artery disease. A statistical analysis of intravascular ultrasound and coronary angiography in 1155 lesions. Circulation. 1995;91:1959–65.

    Article  CAS  PubMed  Google Scholar 

  25. Généreux P, Madhavan MV, Mintz GS, Maehara A, Palmerini T, Lasalle L, Xu K, McAndrew T, Kirtane A, Lansky AJ, Brener SJ, Mehran R, Stone GW. Ischemic outcomes after coronary intervention of calcified vessels in acute coronary syndromes. Pooled analysis from the HORIZONS-AMI (harmonizing outcomes with revascularization and stents in acute myocardial infarction) and ACUITY (acute catheterization and urgent intervention triage strategy) TRIALS. J Am Coll Cardiol. 2014;63:1845–54.

    Article  PubMed  Google Scholar 

  26. Mintz GS. Intravascular imaging of coronary calcification and its clinical implications. JACC Cardiovasc Imaging. 2015;8:461–7.

    Article  PubMed  Google Scholar 

  27. Furukawa E, Hibi K, Kosuge M, et al. Intravascular ultrasound predictors of side branch occlusion in bifurcation lesions after percutaneous coronary intervention. Circ J. 2005;69:325–30.

    Article  PubMed  Google Scholar 

  28. Patel Y, Depta JP, Novak E, et al. Long-term outcomes with use of intravascular ultrasound for the treatment of coronary bifurcation lesions. Am J Cardiol. 2012;109:960–5.

    Article  PubMed  Google Scholar 

  29. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47:13–8.

    Article  Google Scholar 

  30. Lee SY, Mintz GS, Kim SY, et al. Attenuated plaque detected by intravascular ultrasound: clinical, angiographic, and morphologic features and post-percutaneous coronary intervention complications in patients with acute coronary syndromes. J Am Coll Cardiol Intv. 2009;2:65–72.

    Article  Google Scholar 

  31. Wu X, Mintz GS, Xu K, et al. The relationship between attenuated plaque identified by intravascular ultrasound and no-reflow after stenting in acute myocardial infarction: the HORIZONS-AMI (harmonizing outcomes with revascularization and stents in acute myocardial infarction) trial. J Am Coll Cardiol Intv. 2011;4:495–502.

    Article  Google Scholar 

  32. Shiono Y, Kubo T, Tanaka A, et al. Impact of attenuated plaque as detected by intravascular ultrasound on the occurrence of microvascular obstruction after percutaneous coronary intervention in patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol Intv. 2013;6:847–53.

    Article  Google Scholar 

  33. Claessen BE, Maehara A, Fahy M, Xu K, Stone GW, Mintz GS. Plaque composition by intravascular ultrasound and distal embolization after percutaneous coronary intervention. J Am Coll Cardiol Img. 2012;5:S111–8.

    Article  Google Scholar 

  34. Goldstein JA, Maini B, Dixon SR, et al. Detection of lipid-core plaques by intracoronary near-infrared spectroscopy identifies high risk of periprocedural myocardial infarction. Circ Cardiovasc Interv. 2011;4:429–37.

    Article  PubMed  Google Scholar 

  35. Raghunathan D, Abdel-Karim AR, Papayannis AC, et al. Relation between the presence and extent of coronary lipid core plaques detected by near-infrared spectroscopy with postpercutaneous coronary intervention myocardial infarction. Am J Cardiol. 2011;107:1613–8.

    Article  PubMed  Google Scholar 

  36. Brilakis ES, Abdel-Karim AR, Papayannis AC, et al. Embolic protection device utilization during stenting of native coronary artery lesions with large lipid core plaques as detected by nearinfrared spectroscopy. Catheter Cardiovasc Interv. 2012;80:1157–62.

    Article  PubMed  Google Scholar 

  37. Mintz GS. Clinical utility of intravascular imaging and physiology in coronary artery disease. J Am Coll Cardiol. 2014;64:207–22.

    Article  PubMed  Google Scholar 

  38. Lee JB, Mintz GS, Lisauskas JB, et al. Histopathologic validation of the intravascular ultrasound diagnosis of calcified coronary artery nodules. Am J Cardiol. 2011;108:1547–51.

    Article  PubMed  Google Scholar 

  39. Alsheikh-Ali AA, Kitsios GD, Balk EM, Lau J, Ip S. The vulnerable atherosclerotic plaque: scope of the literature. Ann Intern Med. 2010;153:387–95.

    Article  PubMed  Google Scholar 

  40. Rodriguez-Granillo GA, Garcia-Garcia HM, McFadden EP, Valgimigli M, Aoki J, de Feyter P, Serruys PW. In vivo intravascular ultrasoundderived thin-cap fibroatheroma detection using ultrasound radiofrequency data analysis. J Am Coll Cardiol. 2005;46:2038–42.

    Article  PubMed  Google Scholar 

  41. Wu X, Maehara A, Mintz GS, et al. Virtual histology intravascular ultrasound analysis of non-culprit attenuated plaques detected by grayscale intravascular ultrasound in patients with acute coronary syndromes. Am J Cardiol. 2010;105:48–53.

    Article  PubMed  Google Scholar 

  42. Stone GW, Maehara A, Lansky AJ, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364:226–35.

    Article  CAS  PubMed  Google Scholar 

  43. Calvert PA, Obaid DR, O’Sullivan M, et al. Association between IVUS findings and adverse outcomes in patients with coronary artery disease: the VIVA (VH-IVUS in vulnerable atherosclerosis) study. JACC Cardiovasc Imaging. 2011;4:894–901.

    Article  PubMed  Google Scholar 

  44. Cheng JM, Garcia-Garcia HM, de Boer SP, et al. In vivo detection of high-risk coronary plaques by radiofrequency intravascular ultrasound and cardiovascular outcome: results of the ATHEROREMO-IVUS study. Eur Heart J. 2014;35:639–47.

    Article  PubMed  Google Scholar 

  45. Park SJ, Kang SJ, Virmani R, Nakano M, Ueda Y. In-stent neoatherosclerosis: a final common pathway of late stent failure. J Am Coll Cardiol. 2012;59:2051–7.

    Article  PubMed  Google Scholar 

  46. Appleby CE, Bui S, Dzavı’k V. A calcified neointima-“stent” within a stent. J Invasive Cardiol 2009;21:141–143.

    Google Scholar 

  47. Fineschi M, Carrera A, Gori T. Atheromatous degeneration of the neointima in a bare metal stent: intravascular ultrasound evidence. J Cardiovasc Med. 2009;10:572–3.

    Article  Google Scholar 

  48. Hoole SP, Starovoytov A, Hamburger JN. In-stent restenotic lesions can rupture: a case against plaque sealing. Catheter Cardiovasc Interv. 2010;77:841–2.

    Article  PubMed  Google Scholar 

  49. Kang SJ, Mintz GS, Park DW, Lee SW, Kim YH, Lee CW, Han KH, Kim JJ, Park SW, Park SJ. Tissue characterization of in-stent neointima using intravascular ultrasound radiofrequency data analysis. Am J Cardiol. 2010;106:1561–5.

    Article  PubMed  Google Scholar 

  50. Roleder T, Karimi Galougahi K, Chin CY, Bhatti NK, Brilakis E, Nazif TM, Kirtane AJ, Karmpaliotis D, Wojakowski W, Leon MB, Mintz GS, Maehara A, Stone GW, Ali ZA. Utility of near-infrared spectroscopy for detection of thin-cap neoatherosclerosis. Eur Heart J Cardiovasc Imaging. 2017;18:663. doi:10.1093/ehjci/jew198.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Yun Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Lee, S.Y. (2018). Pre-Percutaneous Coronary Intervention Lesion Assessment. In: Hong, MK. (eds) Coronary Imaging and Physiology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2787-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2787-1_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2786-4

  • Online ISBN: 978-981-10-2787-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics