Advertisement

18F-FDG PET/CT in Bone and Joint Diseases

  • Sung-Hoon KimEmail author
  • Ie Ryung YooEmail author
  • Yong-Whee Bahk
Chapter

Abstract

Except for acute trauma such as fracture, contusion, or sprain and physical injury such as electric or thermal burn or freezing, the damage to cells in disease starts at the molecular or chemical level followed by anatomical response. Accordingly, a truly early diagnosis of a disease requires an appropriate means to detect preanatomical change, and PET is a modality that meets this requirement.

References

  1. Alavi A, Zhuang H (2003) PET imaging in infectious diseases. In: Valk PE, Bailey DL, Townsend DW, Maisey MN (eds) Positron emission tomography: basic science and clinical practice, 1st edn. Springer, LondonGoogle Scholar
  2. Aoki J, Watanabe H, Shinozaki T et al (2001) FDG PET of primary benign and malignant bone tumors: standardized uptake value in 52 lesions. Radiology 219:774–777CrossRefPubMedGoogle Scholar
  3. Beckers C, Ribbens C, André B et al (2004) Assessment of disease activity in rheumatoid arthritis with 18F-FDG PET. J Nucl Med 45:956–964PubMedGoogle Scholar
  4. Beckers C, Jeukens X, Ribbens C et al (2006) (18)F-FDG PET imaging of rheumatoid knee synovitis correlates with dynamic magnetic resonance and sonographic assessments as well as with the serum level of metalloproteinase-3. Eur J Nucl Med Mol Imaging 33:275–280CrossRefPubMedGoogle Scholar
  5. Blau M, Nagler W, Bender MA (1962) Fluorine-18: a new isotope for bone scanning. J Nucl Med 3:332–334PubMedGoogle Scholar
  6. Brenner W, Bohuslavizki KH, Eary JF (2003) PET imaging of osteosarcoma. J Nucl Med 44:930–942PubMedGoogle Scholar
  7. Brenner W, Conrad EU, Eary JF (2004) FDG PET imaging for grading and prediction of outcome in chondrosarcoma patients. Eur J Nucl Med Mol Imaging 31:189–195CrossRefPubMedGoogle Scholar
  8. Bury T, Baretto A, Daenen F et al (1998) Fluorine-18 deoxyglucose positron emission tomography for the detection of bone metastases in patients with non-small cell lung cancer. Eur J Nucl Med 25:1244–1247CrossRefPubMedGoogle Scholar
  9. Chacko TK, Zhuang H, Stevenson K et al (2002) The importance of the location of fluorodeoxyglucose uptake in periprosthetic infection in painful hip prostheses. Nucl Med Commun 23:851–855CrossRefPubMedGoogle Scholar
  10. Chakrabarti R, Jung CY, Lee TP et al (1994) Changes in glucosetransport and transporter isoforms during the activation of human peripheral blood lymphocytes by phytohemagglutinin. J Immunol 152:2660–2668PubMedGoogle Scholar
  11. Charest M, Hickeson M, Lisbona R et al (2009) FDG PET/CT imaging in primary osseous and soft tissue sarcomas: a retrospective review of 212 cases. Eur J Nucl Med Imaging 36:1944–1951Google Scholar
  12. Choi HS, Yoo IR, Park HL et al (2014) Role of 18F-FDG PET/CT in differentiation of a benign lesion and metastasis on the ribs of cancer patients. Clin Imaging 38:109–114CrossRefPubMedGoogle Scholar
  13. Clavo AC, Brown RS, Wahl RL (1995) Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia. J Nucl Med 36:1625–1632PubMedGoogle Scholar
  14. Cook GJ (2002) Skeletal and soft tissue. In: Wahl RL, Buchanan JW (eds) Principles and practice of positron emission tomography, 1st edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  15. Cook GJ, Houston S, Rubens R, Maisey MN et al (1998) Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol 16:3375–3379CrossRefPubMedGoogle Scholar
  16. Cornelius P, Marlowe M, Pekala PH (1990) Regulation of glucose transport by tumor necrosis factor-α in cultured murine 3T3-L1 fibroblasts. J Trauma 30:S15–S20CrossRefPubMedGoogle Scholar
  17. Daldrup-Link H, Franzius C, Link TM et al (2001) Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am J Roentgenol 177:229–236CrossRefPubMedGoogle Scholar
  18. de Winter F, Van de Wiele C, Vogelaers D et al (2000) FDG PET is highly accurate in the diagnosis of chronic osteomyelitis in the central skeleton (abstract). J Nucl Med 41:57Google Scholar
  19. de Winter F, van de Wiele C, Vogelaers D et al (2001) Fluorine-18 fluorodeoxyglucose-positron emission tomography: a highly accurate imaging modality for the diagnosis of chronic musculoskeletal infections. J Bone Joint Surg Am 83:651–660CrossRefPubMedGoogle Scholar
  20. de Winter F, Vogelaers D, Gemmel F et al (2002) Promising role of 18-F-fluoro-d-deoxyglucose positron emission tomography in clinical infectious diseases. Eur J Clin Microbiol Infect Dis 21:247–257CrossRefPubMedGoogle Scholar
  21. de Winter F, Gemmel F, Van de Wiele C et al (2003) 18-fluorine fluorodeoxyglucose positron emission tomography for the diagnosis of infection in the postoperative spine. Spine 28:1314–1319PubMedGoogle Scholar
  22. Diaz LA, Foss CA, Thomton K et al (2007) Imaging of musculoskeletal bacterial infections by [124I]FIAU-PET/CT. PLoS One 2:e1007CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dumarey N, Egrise D, Blocklet D et al (2006) Imaging infection with 18F-FDG labeled leukocyte PET/CT: Initial experience in 21 patients. J Nucl Med 47:625–632PubMedGoogle Scholar
  24. Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthop 355:S7–S21CrossRefGoogle Scholar
  25. Feldmann M, Naini RN (2001) Anti-TNFa therapy of rheumatoid arthritis: what have we learned? Annu Rev Immunol 19:163–196CrossRefPubMedGoogle Scholar
  26. Foo SS, Ramdave S, Berlangieri SU, Scott AM (2004) Detection of occult bone metastases of lung cancer with fluorine-18 fluorodeoxyglucose positron emission tomography. Australas Radiol 48:214–216CrossRefPubMedGoogle Scholar
  27. Gamelli RL, Liu H, He LK et al (1996) Augmentations of glucose uptake and glucose transporter-1 in macro-phages following thermal injury and sepsis in mice. J Leukoc Biol 59:639–647PubMedGoogle Scholar
  28. Gratz S, Dorner J, Fischer U et al (2002) 18F-FDG hybrid PET in patients with suspected spondylitis. Eur J Nucl Med 29:516–524CrossRefGoogle Scholar
  29. Guhlmann A, Brecht-Krauss D, Suger G et al (1998) Fluorine18-FDG PET and technetium-99 m antigranulocyte antibody scintigraphy in chronic osteomyelitis. J Nucl Med 39:2145–2152PubMedGoogle Scholar
  30. Hain SF, O’Doherty MJ, Lucas JD et al (1999) Fluorodeoxyglucose PET in the evaluation of amputations for soft tissue sarcoma. Nucl Med Commun 20:845–848CrossRefPubMedGoogle Scholar
  31. Hetzel M, Arslandermir C, Konig HH et al (2003) F-18 NaF PET for detection of bone metastases in lung cancer: accuracy, costeffectiveness, and impact on patient management. J Bone Miner Res 18:2206–2214CrossRefPubMedGoogle Scholar
  32. Hiraga T, Mundy GR, Yoneda T (2000) Bone metastases-morphology. In: Rubins RD, Mundy GR (eds) Cancer and the skeleton. Martin Dunitz, LondonGoogle Scholar
  33. Hongtao L, Hui Z, Bingshun W et al (2012) 18F-FDG positron emission tomography for the assessment of histological response to neoadjuvant chemotherapy in osteosarcomas: a meta-analysis. Surg Oncol 21:e165–170Google Scholar
  34. Jones DN, McCowage GB, Sostman HD et al (1996) Monitoring of neoadjuvant therapy response of soft tissue and musculoskeletal sarcoma using fluorine-18-FDG PET. J Nucl Med 37:1438–1444PubMedGoogle Scholar
  35. Kannivelu A, Loke K, Kok TY et al (2014) The Role of PET/CT in the evaluation of skeletal metastases. Semin Musculoskelet Radiol 18:149–165CrossRefPubMedGoogle Scholar
  36. Kato E, Aoki J, Endo K (2003) Utility of FDG-PET in differential diagnosis of benign and malignant fractures in acute to subacute phase. Ann Nucl Med 17:41–46CrossRefPubMedGoogle Scholar
  37. Keidar Z, Militianu D, Melamed E et al (2005) The diabetic foot: initial experience with 18F-FDG PET/CT. J Nucl Med 46:444–449PubMedGoogle Scholar
  38. Kolindou A, Liu Y, Ozker K et al (1996) In-111 WBC imaging of osteomyelitis in patients with underlying bone scan abnormalities. Clin Nucl Med 21:183–191CrossRefPubMedGoogle Scholar
  39. Koort JK, Mäkinen TJ, Knuuti J et al (2004) Comparative 18FFDG PET of experimental Staphylococcus aureus osteomyelitis and normal bone healing. J Nucl Med 45:1406–1411PubMedGoogle Scholar
  40. Krupitskaya Y, Eslamy HK, Nguyen DD et al (2009) Osteoblastic bone flare on F18-FDG PET in non-small cell lung cancer (NSCLC) patients receiving bevacizumab in addition to standard chemotherapy. J Thorac Oncol 4:429–431CrossRefPubMedGoogle Scholar
  41. Kumar V, Boddeti DK, Evans SG et al (2011) Potential use of 68Ga-apotransferrin as a PET imaging agent for detecting Staphylococcus aureus infection. Nucl Med Biol 38:393–398CrossRefPubMedGoogle Scholar
  42. Lang CH, Bagby GJ, Dobrescu C et al (1992) Modulation of glucose metabolic response to endotoxin by granulocyte colony-stimulating factor. Am J Phys 263:R1122–R1129Google Scholar
  43. Lee FY, Yu J, Chang SS et al (2004) Diagnostic value and limitations of fluorine-18 fluorodeoxyglucose positron emission tomography for cartilaginous tumors of bone. J Bone Joint Surg Am 86:2677–2685CrossRefPubMedGoogle Scholar
  44. Lodge MA, Lucas JD, Marsden PK et al (1999) A PET study of 18FDG uptake in soft tissue masses. Eur J Nucl Med 26:22–30CrossRefPubMedGoogle Scholar
  45. Lucas JD, O’Doherty MJ, Cronin BF et al (1999) Prospective evaluation of soft tissue masses and sarcomas using fluorodeoxyglucose positron emission tomography. Br J Surg 86:550–556CrossRefPubMedGoogle Scholar
  46. Manthey N, Reinhard P, Moog F et al (2002) The use of [18F] fluorodeoxyglucose positron emission tomography to differentiate between synovitis, loosening and infection of hip and knee prostheses. Nucl Med Commun 23:645–653CrossRefPubMedGoogle Scholar
  47. Mester U, Lerman H, Blank A et al (2004) Malignant involvement of the spine: assessment by 18F-FDG PET/CT. J Nucl Med 45:279–284Google Scholar
  48. Moog F, Bangerter M, Kotzerke J et al (1998) 18-F-fluorodeoxyglucose-positron emission tomography as a new approach to detect lymphomatous bone marrow. J Clin Oncol 16:603–609CrossRefPubMedGoogle Scholar
  49. Moon DH, Maddahi J, Siverman DH et al (1998) Accuracy of whole-body fluorine-18-FDG PET for the detection of recurrent or metastatic breast carcinoma. J Nucl Med 39:431–435PubMedGoogle Scholar
  50. Mortimer JE, Dehdashti F, Siegel BA et al (2001) Metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J Clin Oncol 19:2797–2803CrossRefPubMedGoogle Scholar
  51. Nelson CA, Wang JQ, Leav I et al (1996) The interaction among glucose transport, hexokinase, and glucose-6-phosphatase with respect to 3H-2-deoxyglucose retention in murine tumor models. Nucl Med Biol 23:533–541CrossRefPubMedGoogle Scholar
  52. Okamura K, Yonemoto Y, Arisaka Y et al (2012) The assessment of biologic treatment in patients with rheumatoid arthritis using FDG-PET/CT. Rheumatology 51:1484–1491CrossRefPubMedGoogle Scholar
  53. Rini JN, Bhargava KK, Tronco GG et al (2006) PET with FDG-labeled leukocytes versus scintigraphy with 111In-oxine-labeled leukocytes for detection of infection. Radiology 238:978–987CrossRefPubMedGoogle Scholar
  54. Schimidt GP, Schoenberg SO, Schimid R et al (2007) Screening for bone metastases: whole-body MRI using 32-channel system versus dual-modality PET/CT. Eur Radiol 17:939–949CrossRefGoogle Scholar
  55. Schirrmeister H, Guhlmann A, Kotzerke J et al (1999) Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med 40:1623–1629PubMedGoogle Scholar
  56. Schmitz A, Risse JH, Textor J et al (2002) FDG-PET findings of vertebral compression fractures in osteoporosis: preliminary results. Osteoporos Int 13:755–761CrossRefPubMedGoogle Scholar
  57. Schulte M, Brecht-Krauss D, Werner M et al (1999) Evaluation of neoadjuvant therapy response of osteogenic sarcoma using FDG PET. J Nucl Med 40:1637–1643PubMedGoogle Scholar
  58. Schulte M, Brecht-Krauss D, Heymer B et al (2000) Grading of tumors and tumorlike lesions of bone: evaluation by FDG PET. J Nucl Med 41:1695–1701PubMedGoogle Scholar
  59. Schwarzbach MHM, Dimitrakopoulou-Strauss A, Willeke F et al (2000) Clinical value of [18F] fluorodeoxyglucose positron emission tomography imaging in soft tissue sarcomas. Ann Surg 231:380–386CrossRefPubMedPubMedCentralGoogle Scholar
  60. Shreve PD, Grossman HB, Gross MD et al (1996) Metastatic prostatic cancer: initial findings of PET with 2-deoxy-2-[F-18] fluoro-D-glucose. Radiology 199:751–756CrossRefPubMedGoogle Scholar
  61. Smith TAD (2000) Mammalian hexokinases and their abnormal expression in cancer. Br J Biomed Sci 57:170–178PubMedGoogle Scholar
  62. Song JW, Oh YM, Shim TS et al (2009) Efficacy comparison between 18F-FDG PET/CT and bone scintigraphy in detecting bony metastases of non-small-cell lung cancer. Lung Cancer 65:333–338CrossRefPubMedGoogle Scholar
  63. Stumpe KD, Dazzi H, Schaffner A et al (2000) Infection imaging using whole-body FDG-PET. Eur J Nucl Med 27:822–832CrossRefPubMedGoogle Scholar
  64. Stumpe KD, Notzli HP, Zanetti M et al (2004) FDG PET for differentiation of infection and aseptic loosening in total hip replacements: comparison with conventional radiography and three-phase bone scintigraphy. Radiology 231:333–341CrossRefPubMedGoogle Scholar
  65. Sugawara Y, Fisher SJ, Zasadny KR et al (1998a) Preclinical and clinical studies of bone marrow uptake of fluorine-18-fluorodeoxyglucose with or without granulocyte colony-stimulating factor during chemotherapy. J Clin Oncol 16:173–180CrossRefPubMedGoogle Scholar
  66. Sugawara Y, Braun DK, Kison PV et al (1998b) Rapid detection of human infections with fluorine-18 fluorodeoxyglucose and positron emission tomography: preliminary results. Eur J Nucl Med 25:1238–1243CrossRefPubMedGoogle Scholar
  67. Sugawara Y, Gutowski TD, Fisher SJ et al (1999) Uptake of positron emission tomography tracers in experimental bacterial infections: a comparative biodistribution study of radiolabeled FDG, thymidine, L-methionine, 67Gacitrate, and 125I-HSA. Eur J Nucl Med 26:333–341CrossRefPubMedGoogle Scholar
  68. Takenaka D, Ohno Y, Matsumoto K et al (2009) Detection of bone metastases in non-small cell lung cancer patients: comparison of whole-body diffusion-weighted imaging (DWI), whole-body MR imaging without and with DWI, whole-body FDG-PET/CT, and bone scintigraphy. J Magn Reson Imaging 30:298–308CrossRefPubMedGoogle Scholar
  69. Tateish U, Yamaguchi U, Seki K et al (2007) Bone and soft-tissue sarcomas: preoperative staging with fluorine 18 fluorodeoxyglucose PET/CT and conventional imaging. Radiology 245:839–847CrossRefGoogle Scholar
  70. Wang LJ, Wu HB, Wang M et al (2015) Utility of F-18 FDG PET/CT on the evaluation of primary bone lymphoma. Eur J Radiol 84:2275–2279CrossRefPubMedGoogle Scholar
  71. Warburg O (1931) The mechanism of tumors. Richard Smith, New York, pp 129–169Google Scholar
  72. Yamada S, Kubota K, Kubota R et al (1995) High accumulation of fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory tissue. J Nucl Med 36:1301–1306PubMedGoogle Scholar
  73. Yang SN, Liang JA, Lin FJ et al (2002) Comparing whole body 18F-2-deoxyglucose positron emission tomography and technetium-99 m methylene diphosphonate bone scan to detect bone metastases in patients with breast cancer. J Cancer Res Clin Oncol 128:325–328CrossRefPubMedGoogle Scholar
  74. Yao WJ, Hoh CK, Hawkins RA et al (1995) Quantitative PET imaging of bone marrow glucose metabolic response to hematopoietic cytokines. J Nucl Med 36:794–799PubMedGoogle Scholar
  75. Yeh SD, Imbriaco M, Larson SM et al (1996) Detection of bony metastases of androgen-independent prostate cancer by PETFDG. Nucl Med Biol 23:693–697CrossRefPubMedGoogle Scholar
  76. Yonemoto Y, Okamura K, Takeuchi K et al (2016) [18F]fluorodeoxyglucose uptake as a predictor of large joint destruction in patients with rheumatoid arthritis. Rheumatol Int 36:109–115CrossRefPubMedGoogle Scholar
  77. Zhuang H, Duarte PS, Pourdehnad M et al (2000) Exclusion of chronic osteomyelitis with F-18 fluorodeoxyglucose positron emission tomographic imaging. Clin Nucl Med 25:281–284CrossRefPubMedGoogle Scholar
  78. Zhuang H, Duarte PS, Pourdehnad M et al (2001) The promising role of 18F-FDG PET in detecting infected lower limb prosthesis implants. J Nucl Med 42:44–48PubMedGoogle Scholar
  79. Zhuang H, Sam JW, Chacko TK et al (2003) Rapid normalization of osseous FDG uptake following traumatic or surgical fractures. Eur J Nucl Med 30:1096–1103CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Nuclear Medicine and RadiologySun Ae General HospitalSeoulSouth Korea

Personalised recommendations