Advertisement

Scalability Analysis of Medium Access Control Protocols for Internet of Things

  • Nurzaman AhmedEmail author
  • Hafizur Rahman
  • Md. Iftekhar Hussain
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 508)

Abstract

The concept of Internet of Things (IoT) opens up a new vision for the future Internet where not only the users or computing systems but also the everyday objects are capable of processing, communicating, sensing, and actuating. Various IoT applications help in quality of living through the deployment of massive number of devices equipped with wireless communication capability. In supporting the requirements of such IoT applications with massive number of heterogeneous devices, Medium Access Control (MAC) protocol holds the key responsibility of optimal utilization of network bandwidth. This paper compares the performance of contention-based, reservation-based and hybrid MAC protocols in the context of large scale networks for IoT. Further, it provides a survey of the key requirements, technical challenges, and existing works on scalable MAC protocols for supporting efficient communications in IoT. We highlight the problems and prospects of existing MAC protocols and identify the factors for improvement and future direction.

Keywords

Internet of things Machine-to-machine communication Hybrid MAC Scalable MAC 

Notes

Acknowledgment

This work has been supported by the project titled “QoS Provisioning in Internet of Things (IoT)” (Ref No. 13 (7)/2015-CC&BT dated: 28/09/2015) funded by DeitY (CC & BT), Govt. of India.

References

  1. 1.
    The Internet of Things - Concept and Problem Statement(draft). https://tools.ietf.org/html/draft-lee-iot-problem-statement-00.
  2. 2.
    Want, R., Schilit, B.N., Jenson, S.: Enabling the internet of things. Computer (1), 28–35 (2015).Google Scholar
  3. 3.
    Dandelski, C., Wenning, B.L., Perez, D., Pesch, D., Linnartz, J.P.: Scalability of dense Wireless Lighting control Networks. Communications Magazine, IEEE 53(1), 157–165 (Jan 2015).Google Scholar
  4. 4.
    Lin, T., Rivano, H., Mou•el, F.L.: How to choose the relevant MAC protocol for wireless smart parking urban networks? In: Proceedings of the 11th ACM symposium on Performance evaluation of wireless ad hoc sensor, & ubiquitous networks (PE-WASUN). ACM (2014).Google Scholar
  5. 5.
    On, J., Jeon, H., Lee, J.: A Scalable MAC Protocol Supporting Simple Multimedia Traffic QoS in WSNs. International Journal of Distributed Sensor Networks 2011, 1–11 (2011).Google Scholar
  6. 6.
    Qian, Z., Wang, Y., Wang, X., Zhu, S.: M/I Adaptation Layer Network Protocol for IoT Based on 6LoWPAN. In: Internet of Things, pp. 208–215. Springer Science+Business Media (2012).Google Scholar
  7. 7.
    Rajandekar, A., Sikdar, B.: A Survey of MAC Layer Issues and Protocols for Machine-to-Machine Communications. IEEE Internet of Things Journal 2(2), 175– 186 (2015).Google Scholar
  8. 8.
    Miorandi, D., Sicari, S., De Pellegrini, F., Chlamtac, I.: Internet of things: Vision, applications and research challenges. Ad Hoc Networks 10(7), 1497–1516 (2012).Google Scholar
  9. 9.
    Akyildiz, I., Pierobon, M., Balasubramaniam, S., Koucheryavy, Y.: The Internet of Bio-Nano Things. Communications Magazine, IEEE 53(3), 32–40 (March 2015).Google Scholar
  10. 10.
    Aust, S., Prasad, R.V., Niemegeers, I.G.M.M.: IEEE 802.11ah: Advantages in standards and further challenges for sub 1 GHz Wi-Fi. In: 2012 IEEE International Conference on Communications (ICC). IEEE (jun 2012).Google Scholar
  11. 11.
    Zhou, Y., Wang, H., Zheng, S., Lei, Z.Z.: Advances in IEEE 802.11ah standardization for machine-type communications in sub-1 GHz WLAN. In: 2013 IEEE International Conference on Communications Workshops (ICC). IEEE (jun 2013).Google Scholar
  12. 12.
    Yuan, Y., Arbaugh, W.A., Lu, S.: Towards Scalable MAC Design for High-Speed Wireless LANs. EURASIP J Wirel Commun Netw 2007(1), 012597 (2007).Google Scholar
  13. 13.
    Rhee, I., Warrier, A., Aia, M., Min, J., Sichitiu, M.: Z-MAC: A Hybrid MAC for Wireless Sensor Networks. IEEE/ACM Transactions on Networking 16(3), 511–524 (jun 2008).Google Scholar
  14. 14.
    Liu, Y., Yuen, C., Chen, J., Cao, X.: A scalable Hybrid MAC protocol for massive M2M networks. In: 2013 IEEE Wireless Communications and Networking Conference (WCNC). IEEE (apr 2013).Google Scholar
  15. 15.
    Verma, P.K., Tripathi, R., Naik, K.: A Robust Hybrid-MAC Protocol for M2 M Communications. In: Computer and Communication Technology (ICCCT), International Conference on. pp. 267–271. IEEE (2014).Google Scholar
  16. 16.
    Liu, Y., Yuen, C., Cao, X., Hassan, N.U., Chen, J.: Design of a Scalable Hybrid MAC Protocol for Heterogeneous M2M Networks. IEEE Internet of Things Journal 1(1), 99–111 (feb 2014).Google Scholar
  17. 17.
    Bergamini, L., Corbellini, G., Mangold, S.: Resource-constrained Medium Access Control protocol for Wearable Devices. In: Wireless and Mobile Computing, Net-working and Communications (WiMob), IEEE 10th International Conference on. pp. 634–641 (Oct 2014).Google Scholar
  18. 18.
    Sun, W., Choi, M., Choi, S.: IEEE 802.11 ah: A long range 802.11 WLAN at sub 1 GHz. Journal of ICT Standardization 1(1), 83–108 (2013).Google Scholar
  19. 19.
    Adame, T., Bel, A., Bellalta, B., Barcelo, J., Oliver, M.: IEEE 802.11AH: the WiFi approach for M2 M Communications. Wireless Communications, IEEE 21(6), 144–152 (December 2014).Google Scholar
  20. 20.
    Park, C.W., Hwang, D., Lee, T.J.: Enhancement of IEEE 802.11ah MAC for M2M Communications. IEEE Communications Letters 18(7), 1151–1154 (jul 2014).Google Scholar
  21. 21.
    Cano, C., Bellalta, B., Sfairopoulou, A., Oliver, M.: Low energy operation in WSNs: A survey of preamble sampling MAC protocols. Computer Networks 55(15), 3351–3363 (oct 2011).Google Scholar
  22. 22.
    Beaudaux, J., Gallais, A., Noel, T.: Heterogeneous MAC duty-cycling for energy-efficient Internet of Things deployments. Networking Science 3(1–4), 54–62 (apr 2013).Google Scholar
  23. 23.
    Sha er, S., Vasseur, J.P., Shetty, S.J.: Dynamic reroute scheduling in a directed acyclic graph (DAG) (Jan 20 2015), uS Patent 8,937,886.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Nurzaman Ahmed
    • 1
    Email author
  • Hafizur Rahman
    • 1
  • Md. Iftekhar Hussain
    • 1
  1. 1.North-Eastern Hill UniversityShillongIndia

Personalised recommendations