Skip to main content

Granulocyte Colony-Stimulating Factor

  • Chapter
  • First Online:

Abstract

Granulocyte colony-stimulating factor (G-CSF) is a potent hematopoietic protein that promotes the development and function of granulocytes and mobilizes stem/progenitor cells from the bone marrow. Recent studies have shown that G-CSF also directly influences the activity of some non-hematopoietic cells, such as cardiomyocytes, endothelial cells, and neurons via G-CSF receptor. This chapter provides an overview of the preclinical and clinical reports to demonstrate the usefulness and the current limitations of the therapeutic strategy using G-CSF for ischemic diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Metcalf D. The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells. Nature. 1989;339:27–30. doi:10.1038/339027a0.

    Article  CAS  PubMed  Google Scholar 

  2. Nagata S, Tsuchiya M, Asano S, Kaziro Y, Yamazaki T, Yamamoto O, et al. Molecular cloning and expression of cDNA for human granulocyte colony-stimulating factor. Nature. 1986;319:415–8.

    Article  CAS  PubMed  Google Scholar 

  3. Welte K, Gabrilove J, Bronchud MH, Platzer E, Morstyn G. Filgrastim (r-metHuG-CSF): the first 10 years. Blood. 1996;88:1907–29.

    CAS  PubMed  Google Scholar 

  4. Bussolino F, Ziche M, Wang JM, Alessi D, Morbidelli L, Cremona O, et al. In vitro and in vivo activation of endothelial cells by colony-stimulating factors. J Clin Invest. 1991;87:986–95. doi:10.1172/JCI115107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Le Beau MM, Lemons RS, Carrino JJ, Pettenati MJ, Souza LM, Diaz MO, et al. Chromosomal localization of the human G-CSF gene to 17q11 proximal to the breakpoint of the t(15;17) in acute promyelocytic leukemia. Leukemia. 1987;1:795–9.

    PubMed  Google Scholar 

  6. Nagata S, Tsuchiya M, Asano S, Yamamoto O, Hirata Y, Kubota N, et al. The chromosomal gene structure and two mRNAs for human granulocyte colony-stimulating factor. EMBO J. 1986;5:575–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Koeffler HP, Gasson J, Ranyard J, Souza L, Shepard M, Munker R. Recombinant human TNF alpha stimulates production of granulocyte colony-stimulating factor. Blood. 1987;70:55–9.

    CAS  PubMed  Google Scholar 

  8. Kaushansky K, Lin N, Adamson JW. Interleukin 1 stimulates fibroblasts to synthesize granulocyte-macrophage and granulocyte colony-stimulating factors. Mechanism for the hematopoietic response to inflammation. J Clin Invest. 1988;81:92–7. doi:10.1172/JCI113316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vellenga E, Rambaldi A, Ernst TJ, Ostapovicz D, Griffin JD. Independent regulation of M-CSF and G-CSF gene expression in human monocytes. Blood. 1988;71:1529–32.

    CAS  PubMed  Google Scholar 

  10. Zsebo KM, Yuschenkoff VN, Schiffer S, Chang D, McCall E, Dinarello CA, et al. Vascular endothelial cells and granulopoiesis: interleukin-1 stimulates release of G-CSF and GM-CSF. Blood. 1988;71:99–103.

    CAS  PubMed  Google Scholar 

  11. Demetri GD, Griffin JD. Granulocyte colony-stimulating factor and its receptor. Blood. 1991;78:2791–808.

    CAS  PubMed  Google Scholar 

  12. Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med. 1996;183:2593–603.

    Article  CAS  PubMed  Google Scholar 

  13. Sano E, Ohashi K, Sato Y, Kashiwagi M, Joguchi A, Naruse N. A possible role of autogenous IFN-Beta for cytokine productions in human fibroblasts. J Cell Biochem. 2007;100:1459–76. doi:10.1002/jcb.21128.

    Article  CAS  PubMed  Google Scholar 

  14. Fukunaga R, Ishizaka-Ikeda E, Pan CX, Seto Y, Nagata S. Functional domains of the granulocyte colony-stimulating factor receptor. EMBO J. 1991;10:2855–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Boneberg EM, Hareng L, Gantner F, Wendel A, Hartung T. Human monocytes express functional receptors for granulocyte colony-stimulating factor that mediate suppression of monokines and interferon-gamma. Blood. 2000;95:270–6.

    CAS  PubMed  Google Scholar 

  16. Bussolino F, Wang JM, Defilippi P, Turrini F, Sanavio F, Edgell CJ, et al. Granulocyte- and granulocyte-macrophage-colony stimulating factors induce human endothelial cells to migrate and proliferate. Nature. 1989;337:471–3. doi:10.1038/337471a0.

    Article  CAS  PubMed  Google Scholar 

  17. Hanazono Y, Hosoi T, Kuwaki T, Matsuki S, Miyazono K, Miyagawa K, et al. Structural analysis of the receptors for granulocyte colony-stimulating factor on neutrophils. Exp Hematol. 1990;18:1097–103.

    CAS  PubMed  Google Scholar 

  18. Harada M, Qin Y, Takano H, Minamino T, Zou Y, Toko H, et al. G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat Med. 2005;11:305–11. doi:10.1038/nm1199.

    Article  CAS  PubMed  Google Scholar 

  19. Kuhlmann MT, Kirchhof P, Klocke R, Hasib L, Stypmann J, Fabritz L, et al. G-CSF/SCF reduces inducible arrhythmias in the infarcted heart potentially via increased connexin43 expression and arteriogenesis. J Exp Med. 2006;203:87–97. doi:10.1084/jem.20051151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morikawa K, Morikawa S, Nakamura M, Miyawaki T. Characterization of granulocyte colony-stimulating factor receptor expressed on human lymphocytes. Br J Haematol. 2002;118:296–304.

    Article  CAS  PubMed  Google Scholar 

  21. Shimoda K, Okamura S, Harada N, Kondo S, Okamura T, Niho Y. Identification of a functional receptor for granulocyte colony-stimulating factor on platelets. J Clin Invest. 1993;91:1310–3. doi:10.1172/JCI116330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tian SS, Lamb P, Seidel HM, Stein RB, Rosen J. Rapid activation of the STAT3 transcription factor by granulocyte colony-stimulating factor. Blood. 1994;84:1760–4.

    CAS  PubMed  Google Scholar 

  23. Shimoda K, Feng J, Murakami H, Nagata S, Watling D, Rogers NC, et al. Jak1 plays an essential role for receptor phosphorylation and Stat activation in response to granulocyte colony-stimulating factor. Blood. 1997;90:597–604.

    CAS  PubMed  Google Scholar 

  24. Dong F, Larner AC. Activation of Akt kinase by granulocyte colony-stimulating factor (G-CSF): evidence for the role of a tyrosine kinase activity distinct from the Janus kinases. Blood. 2000;95:1656–62.

    CAS  PubMed  Google Scholar 

  25. Hunter MG, Avalos BR. Phosphatidylinositol 3′-kinase and SH2-containing inositol phosphatase (SHIP) are recruited by distinct positive and negative growth-regulatory domains in the granulocyte colony-stimulating factor receptor. J Immunol. 1998;160:4979–87.

    CAS  PubMed  Google Scholar 

  26. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A. 2001;98:10344–9. doi:10.1073/pnas.181177898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001;7:430–6. doi:10.1038/86498.

    Article  CAS  PubMed  Google Scholar 

  28. Kawamoto A, Murayama T, Kusano K, Ii M, Tkebuchava T, Shintani S, et al. Synergistic effect of bone marrow mobilization and vascular endothelial growth factor-2 gene therapy in myocardial ischemia. Circulation. 2004;110:1398–405. doi:10.1161/01.CIR.0000141563.71410.64.

    Article  CAS  PubMed  Google Scholar 

  29. Kajstura J, Rota M, Whang B, Cascapera S, Hosoda T, Bearzi C, et al. Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ Res. 2005;96:127–37. doi:10.1161/01.RES.0000151843.79801.60.

    Article  CAS  PubMed  Google Scholar 

  30. Leri A, Kajstura J, Anversa P. Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev. 2005;85:1373–416. doi:10.1152/physrev.00013.2005.

    Article  CAS  PubMed  Google Scholar 

  31. Minatoguchi S, Takemura G, Chen XH, Wang N, Uno Y, Koda M, et al. Acceleration of the healing process and myocardial regeneration may be important as a mechanism of improvement of cardiac function and remodeling by postinfarction granulocyte colony-stimulating factor treatment. Circulation. 2004;109:2572–80. doi:10.1161/01.CIR.0000129770.93985.3E.

    Article  CAS  PubMed  Google Scholar 

  32. Ohki Y, Heissig B, Sato Y, Akiyama H, Zhu Z, Hicklin DJ, et al. Granulocyte colony-stimulating factor promotes neovascularization by releasing vascular endothelial growth factor from neutrophils. FASEB J. 2005;19:2005–7. doi:10.1096/fj.04-3496fje.

    CAS  PubMed  Google Scholar 

  33. Kuethe F, Figulla HR, Herzau M, Voth M, Fritzenwanger M, Opfermann T, et al. Treatment with granulocyte colony-stimulating factor for mobilization of bone marrow cells in patients with acute myocardial infarction. Am Heart J. 2005;150:115. doi:10.1016/j.ahj.2005.04.030.

    Article  CAS  PubMed  Google Scholar 

  34. Deindl E, Zaruba MM, Brunner S, Huber B, Mehl U, Assmann G, et al. G-CSF administration after myocardial infarction in mice attenuates late ischemic cardiomyopathy by enhanced arteriogenesis. FASEB J. 2006;20:956–8. doi:10.1096/fj.05-4763fje.

    Article  CAS  PubMed  Google Scholar 

  35. Suda T, Suda J, Kajigaya S, Nagata S, Asano S, Saito M, et al. Effects of recombinant murine granulocyte colony-stimulating factor on granulocyte-macrophage and blast colony formation. Exp Hematol. 1987;15:958–65.

    CAS  PubMed  Google Scholar 

  36. Vandervelde S, van Luyn MJ, Tio RA, Harmsen MC. Signaling factors in stem cell-mediated repair of infarcted myocardium. J Mol Cell Cardiol. 2005;39:363–76. doi:10.1016/j.yjmcc.2005.05.012.

    Article  CAS  PubMed  Google Scholar 

  37. Kang H-J, Kim H-S, Zhang S-Y, Park K-W, Cho H-J, Koo B-K, et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet. 2004;363:751–6. doi:10.1016/S0140-6736(04)15689-4.

    Article  CAS  PubMed  Google Scholar 

  38. Kang HJ, Kim HS, Koo BK, Kim YJ, Lee D, Sohn DW, et al. Intracoronary infusion of the mobilized peripheral blood stem cell by G-CSF is better than mobilization alone by G-CSF for improvement of cardiac function and remodeling: 2-years follow-up results of the Myocardial Regeneration and Angiogenesis in Myocardial Infarction with G-CSF and Intra-Coronary Stem Cell Infusion (MAGIC Cell) 1 trial. Am Heart J. 2007;153:237.doi:10.1016/j.ahj.2006.11.004.e1-8

    Article  PubMed  CAS  Google Scholar 

  39. Ince H, Petzsch M, Kleine HD, Schmidt H, Rehders T, Korber T, et al. Preservation from left ventricular remodeling by front-integrated revascularization and stem cell liberation in evolving acute myocardial infarction by use of granulocyte-colony-stimulating factor (FIRSTLINE-AMI). Circulation. 2005;112:3097–106. doi:10.1161/CIRCULATIONAHA.105.541433.

    Article  CAS  PubMed  Google Scholar 

  40. Ince H, Petzsch M, Kleine HD, Eckard H, Rehders T, Burska D, et al. Prevention of left ventricular remodeling with granulocyte colony-stimulating factor after acute myocardial infarction: final 1-year results of the Front-integrated Revascularization and Stem Cell Liberation in Evolving Acute Myocardial Infarction by Granulocyte Colony-Stimulating Factor (FIRSTLINE-AMI) trial. Circulation. 2005;112:I73–80. doi:10.1161/CIRCULATIONAHA.104.524827.

    Article  PubMed  CAS  Google Scholar 

  41. Valgimigli M, Rigolin GM, Cittanti C, Malagutti P, Curello S, Percoco G, et al. Use of granulocyte-colony stimulating factor during acute myocardial infarction to enhance bone marrow stem cell mobilization in humans: clinical and angiographic safety profile. Eur Heart J. 2005;26:1838–45. doi:10.1093/eurheartj/ehi289.

    Article  CAS  PubMed  Google Scholar 

  42. Ripa RS, Jorgensen E, Wang Y, Thune JJ, Nilsson JC, Sondergaard L, et al. Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction: result of the double-blind, randomized, placebo-controlled stem cells in myocardial infarction (STEMMI) trial. Circulation. 2006;113:1983–92. doi:10.1161/CIRCULATIONAHA.105.610469.

    Article  CAS  PubMed  Google Scholar 

  43. Zohlnhofer D, Ott I, Mehilli J, Schomig K, Michalk F, Ibrahim T, et al. Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: a randomized controlled trial. JAMA. 2006;295:1003–10. doi:10.1001/jama.295.9.1003.

    Article  PubMed  Google Scholar 

  44. Engelmann MG, Theiss HD, Hennig-Theiss C, Huber A, Wintersperger BJ, Werle-Ruedinger AE, et al. Autologous bone marrow stem cell mobilization induced by granulocyte colony-stimulating factor after subacute ST-segment elevation myocardial infarction undergoing late revascularization: final results from the G-CSF-STEMI (Granulocyte Colony-Stimulating Factor ST-Segment Elevation Myocardial Infarction) trial. J Am Coll Cardiol. 2006;48:1712–21. doi:10.1016/j.jacc.2006.07.044.

    Article  CAS  PubMed  Google Scholar 

  45. Achilli F, Malafronte C, Lenatti L, Gentile F, Dadone V, Gibelli G, et al. Granulocyte colony-stimulating factor attenuates left ventricular remodelling after acute anterior STEMI: results of the single-blind, randomized, placebo-controlled multicentre Stem Cell Mobilization in Acute Myocardial Infarction (STEM-AMI) Trial. Eur J Heart Fail. 2010;12:1111–21. doi:10.1093/eurjhf/hfq150.

    Article  CAS  PubMed  Google Scholar 

  46. Achilli F, Malafronte C, Maggiolini S, Lenatti L, Squadroni L, Gibelli G, et al. G-CSF treatment for STEMI: final 3-years follow-up of the randomised placebo-controlled STEM-AMI trial. Heart. 2014;100:574–81. doi:10.1136/heartjnl-2013-304955.

    Article  CAS  PubMed  Google Scholar 

  47. Suarez de Lezo J, Torres A, Herrera I, Pan M, Romero M, Pavlovic D, et al. Effects of stem-cell mobilization with recombinant human granulocyte colony stimulating factor in patients with percutaneously revascularized acute anterior myocardial infarction. Rev Esp Cardiol. 2005;58:253–61.

    Article  PubMed  Google Scholar 

  48. Abdel-Latif A, Bolli R, Zuba-Surma EK, Tleyjeh IM, Hornung CA, Dawn B. Granulocyte colony-stimulating factor therapy for cardiac repair after acute myocardial infarction: a systematic review and meta-analysis of randomized controlled trials. Am Heart J. 2008;156:216–26. e9 doi:10.1016/j.ahj.2008.03.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ince H, Valgimigli M, Petzsch M, de Lezo JS, Kuethe F, Dunkelmann S, et al. Cardiovascular events and re-stenosis following administration of G-CSF in acute myocardial infarction: systematic review and meta-analysis. Heart. 2008;94:610–6. doi:10.1136/hrt.2006.111385.

    Article  CAS  PubMed  Google Scholar 

  50. Zohlnhofer D, Dibra A, Koppara T, de Waha A, Ripa RS, Kastrup J, et al. Stem cell mobilization by granulocyte colony-stimulating factor for myocardial recovery after acute myocardial infarction: a meta-analysis. J Am Coll Cardiol. 2008;51:1429–37. doi:10.1016/j.jacc.2007.11.073.

    Article  PubMed  CAS  Google Scholar 

  51. Achilli F, Malafronte C, Cesana F, Maggiolini S, Mauro C, De Ferrari GM, et al. Granulocyte-colony stimulating factor for large anterior ST-elevation myocardial infarction: rationale and design of the prospective randomized phase III STEM-AMI OUTCOME trial. Am Heart J. 2015;170:652–8. e7. doi:10.1016/j.ahj.2015.07.005.

    Article  CAS  PubMed  Google Scholar 

  52. Hill JM, Syed MA, Arai AE, Powell TM, Paul JD, Zalos G, et al. Outcomes and risks of granulocyte colony-stimulating factor in patients with coronary artery disease. J Am Coll Cardiol. 2005;46:1643–8. doi:10.1016/j.jacc.2005.01.067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang Y, Tagil K, Ripa RS, Nilsson JC, Carstensen S, Jorgensen E, et al. Effect of mobilization of bone marrow stem cells by granulocyte colony stimulating factor on clinical symptoms, left ventricular perfusion and function in patients with severe chronic ischemic heart disease. Int J Cardiol. 2005;100:477–83. doi:10.1016/j.ijcard.2004.12.006.

    Article  PubMed  Google Scholar 

  54. Ripa RS, Wang Y, Jorgensen E, Johnsen HE, Hesse B, Kastrup J. Intramyocardial injection of vascular endothelial growth factor-A165 plasmid followed by granulocyte-colony stimulating factor to induce angiogenesis in patients with severe chronic ischaemic heart disease. Eur Heart J. 2006;27:1785–92. doi:10.1093/eurheartj/ehl117.

    Article  CAS  PubMed  Google Scholar 

  55. Huttmann A, Duhrsen U, Stypmann J, Noppeney R, Nuckel H, Neumann T, et al. Granulocyte colony-stimulating factor-induced blood stem cell mobilisation in patients with chronic heart failure—feasibility, safety and effects on exercise tolerance and cardiac function. Basic Res Cardiol. 2006;101:78–86. doi:10.1007/s00395-005-0556-1.

    Article  PubMed  CAS  Google Scholar 

  56. Lee M, Aoki M, Kondo T, Kobayashi K, Okumura K, Komori K, et al. Therapeutic angiogenesis with intramuscular injection of low-dose recombinant granulocyte-colony stimulating factor. Arterioscler Thromb Vasc Biol. 2005;25:2535–41. doi:10.1161/01.atv.0000190609.28293.17.

    Article  CAS  PubMed  Google Scholar 

  57. Arai M, Misao Y, Nagai H, Kawasaki M, Nagashima K, Suzuki K, et al. Granulocyte colony-stimulating factor: a noninvasive regeneration therapy for treating atherosclerotic peripheral artery disease. Circ J. 2006;70:1093–8.

    Article  CAS  PubMed  Google Scholar 

  58. Six I, Gasan G, Mura E, Bordet R. Beneficial effect of pharmacological mobilization of bone marrow in experimental cerebral ischemia. Eur J Pharmacol. 2003;458:327–8.

    Article  CAS  PubMed  Google Scholar 

  59. Shyu WC, Lin SZ, Yang HI, Tzeng YS, Pang CY, Yen PS, et al. Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation. 2004;110:1847–54. doi:10.1161/01.CIR.0000142616.07367.66.

    Article  CAS  PubMed  Google Scholar 

  60. Schabitz WR, Kollmar R, Schwaninger M, Juettler E, Bardutzky J, Scholzke MN, et al. Neuroprotective effect of granulocyte colony-stimulating factor after focal cerebral ischemia. Stroke. 2003;34:745–51. doi:10.1161/01.STR.0000057814.70180.17.

    Article  PubMed  CAS  Google Scholar 

  61. Gibson CL, Bath PM, Murphy SP. G-CSF administration is neuroprotective following transient cerebral ischemia even in the absence of a functional NOS-2 gene. J Cereb Blood Flow Metab. 2010;30:739–43. doi:10.1038/jcbfm.2010.12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gibson CL, Bath PM, Murphy SP. G-CSF reduces infarct volume and improves functional outcome after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab. 2005;25:431–9. doi:10.1038/sj.jcbfm.9600033.

    Article  CAS  PubMed  Google Scholar 

  63. England TJ, Gibson CL, Bath PM. Granulocyte-colony stimulating factor in experimental stroke and its effects on infarct size and functional outcome: a systematic review. Brain Res Rev. 2009;62:71–82. doi:10.1016/j.brainresrev.2009.09.002.

    Article  CAS  PubMed  Google Scholar 

  64. Han JL, Blank T, Schwab S, Kollmar R. Inhibited glutamate release by granulocyte-colony stimulating factor after experimental stroke. Neurosci Lett. 2008;432:167–9. doi:10.1016/j.neulet.2007.07.056.

    Article  CAS  PubMed  Google Scholar 

  65. Komine-Kobayashi M, Zhang N, Liu M, Tanaka R, Hara H, Osaka A, et al. Neuroprotective effect of recombinant human granulocyte colony-stimulating factor in transient focal ischemia of mice. J Cereb Blood Flow Metab. 2006;26:402–13. doi:10.1038/sj.jcbfm.9600195.

    Article  CAS  PubMed  Google Scholar 

  66. Lee ST, Chu K, Jung KH, Ko SY, Kim EH, Sinn DI, et al. Granulocyte colony-stimulating factor enhances angiogenesis after focal cerebral ischemia. Brain Res. 2005;1058:120–8. doi:10.1016/j.brainres.2005.07.076.

    Article  CAS  PubMed  Google Scholar 

  67. Sehara Y, Hayashi T, Deguchi K, Zhang H, Tsuchiya A, Yamashita T, et al. Potentiation of neurogenesis and angiogenesis by G-CSF after focal cerebral ischemia in rats. Brain Res. 2007;1151:142–9. doi:10.1016/j.brainres.2007.01.149.

    Article  CAS  PubMed  Google Scholar 

  68. Solaroglu I, Cahill J, Tsubokawa T, Beskonakli E, Zhang JH. Granulocyte colony-stimulating factor protects the brain against experimental stroke via inhibition of apoptosis and inflammation. Neurol Res. 2009;31:167–72. doi:10.1179/174313209X393582.

    Article  CAS  PubMed  Google Scholar 

  69. Schneider A, Kruger C, Steigleder T, Weber D, Pitzer C, Laage R, et al. The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J Clin Invest. 2005;115:2083–98. doi:10.1172/JCI23559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Solaroglu I, Tsubokawa T, Cahill J, Zhang JH. Anti-apoptotic effect of granulocyte-colony stimulating factor after focal cerebral ischemia in the rat. Neuroscience. 2006;143:965–74. doi:10.1016/j.neuroscience.2006.09.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sevimli S, Diederich K, Strecker JK, Schilling M, Klocke R, Nikol S, et al. Endogenous brain protection by granulocyte-colony stimulating factor after ischemic stroke. Exp Neurol. 2009;217:328–35. doi:10.1016/j.expneurol.2009.03.018.

    Article  CAS  PubMed  Google Scholar 

  72. Taguchi A, Wen Z, Myojin K, Yoshihara T, Nakagomi T, Nakayama D, et al. Granulocyte colony-stimulating factor has a negative effect on stroke outcome in a murine model. Eur J Neurosci. 2007;26:126–33. doi:10.1111/j.1460-9568.2007.05640.x.

    Article  PubMed  Google Scholar 

  73. Strecker JK, Sevimli S, Schilling M, Klocke R, Nikol S, Schneider A, et al. Effects of G-CSF treatment on neutrophil mobilization and neurological outcome after transient focal ischemia. Exp Neurol. 2010;222:108–13. doi:10.1016/j.expneurol.2009.12.012.

    Article  CAS  PubMed  Google Scholar 

  74. Shyu WC, Lin SZ, Lee CC, Liu DD, Li H. Granulocyte colony-stimulating factor for acute ischemic stroke: a randomized controlled trial. CMAJ. 2006;174:927–33. doi:10.1503/cmaj.051322.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sprigg N, Bath PM, Zhao L, Willmot MR, Gray LJ, Walker MF, et al. Granulocyte-colony–stimulating factor mobilizes bone marrow stem cells in patients with subacute ischemic stroke: the stem cell trial of recovery enhancement after stroke (STEMS) pilot randomized, controlled trial (ISRCTN 16784092). Stroke. 2006;37:2979–83. doi:10.1161/01.STR.0000248763.49831.c3.

    Article  CAS  PubMed  Google Scholar 

  76. Schabitz WR, Laage R, Vogt G, Koch W, Kollmar R, Schwab S, et al. AXIS: a trial of intravenous granulocyte colony-stimulating factor in acute ischemic stroke. Stroke. 2010;41:2545–51. doi:10.1161/STROKEAHA.110.579508.

    Article  PubMed  CAS  Google Scholar 

  77. England TJ, Abaei M, Auer DP, Lowe J, Jones DRE, Sare G, et al. Granulocyte-colony stimulating factor for mobilizing bone marrow stem cells in subacute stroke: the stem cell trial of recovery enhancement after stroke 2 randomized controlled trial. Stroke. 2012;43:405–11. doi:10.1161/strokeaha.111.636449.

    Article  CAS  PubMed  Google Scholar 

  78. Ringelstein EB, Thijs V, Norrving B, Chamorro A, Aichner F, Grond M, et al. Granulocyte colony–stimulating factor in patients with acute ischemic stroke: results of the AX200 for ischemic stroke trial. Stroke. 2013;44:2681–7. doi:10.1161/strokeaha.113.001531.

    Article  CAS  PubMed  Google Scholar 

  79. Floel A, Warnecke T, Duning T, Lating Y, Uhlenbrock J, Schneider A, et al. Granulocyte-colony stimulating factor (G-CSF) in stroke patients with concomitant vascular disease—a randomized controlled trial. PLoS One. 2011;6:e19767. doi:10.1371/journal.pone.0019767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.

    Article  CAS  PubMed  Google Scholar 

  81. Masuda H, Kalka C, Takahashi T, Yoshida M, Wada M, Kobori M, et al. Estrogen-mediated endothelial progenitor cell biology and kinetics for physiological postnatal vasculogenesis. Circ Res. 2007;101:598–606. doi:10.1161/CIRCRESAHA.106.144006.

    Article  CAS  PubMed  Google Scholar 

  82. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med. 1999;5:434–8. doi:10.1038/7434.

    Article  CAS  PubMed  Google Scholar 

  83. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410:701–5. doi:10.1038/35070587.

    Article  CAS  PubMed  Google Scholar 

  84. Narmoneva DA, Vukmirovic R, Davis ME, Kamm RD, Lee RT. Endothelial cells promote cardiac myocyte survival and spatial reorganization: implications for cardiac regeneration. Circulation. 2004;110:962–8. doi:10.1161/01.CIR.0000140667.37070.07.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kamihata H, Matsubara H, Nishiue T, Fujiyama S, Amano K, Iba O, et al. Improvement of collateral perfusion and regional function by implantation of peripheral blood mononuclear cells into ischemic hibernating myocardium. Arterioscler Thromb Vasc Biol. 2002;22:1804–10.

    Article  CAS  PubMed  Google Scholar 

  86. Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S, et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res. 2004;94:678–85. doi:10.1161/01.RES.0000118601.37875.AC.

    Article  CAS  PubMed  Google Scholar 

  87. Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation. 2004;109:1543–9. doi:10.1161/01.CIR.0000124062.31102.57.

    Article  CAS  PubMed  Google Scholar 

  88. Rehman J, Li J, Orschell CM, March KL. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation. 2003;107:1164–9.

    Article  PubMed  Google Scholar 

  89. Wollert KC, Drexler H. Clinical applications of stem cells for the heart. Circ Res. 2005;96:151–63. doi:10.1161/01.RES.0000155333.69009.63.

    Article  CAS  PubMed  Google Scholar 

  90. Gehling UM, Ergun S, Schumacher U, Wagener C, Pantel K, Otte M, et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood. 2000;95:3106–12.

    CAS  PubMed  Google Scholar 

  91. Kawamoto A, Iwasaki H, Kusano K, Murayama T, Oyamada A, Silver M, et al. CD34-positive cells exhibit increased potency and safety for therapeutic neovascularization after myocardial infarction compared with total mononuclear cells. Circulation. 2006;114:2163–9. doi:10.1161/CIRCULATIONAHA.106.644518.

    Article  PubMed  Google Scholar 

  92. Masuda H, Alev C, Akimaru H, Ito R, Shizuno T, Kobori M, et al. Methodological development of a clonogenic assay to determine endothelial progenitor cell potential. Circ Res. 2011;109:20–37. doi:10.1161/CIRCRESAHA.110.231837.

    Article  CAS  PubMed  Google Scholar 

  93. Ramos AL, Darabi R, Akbarloo N, Borges L, Catanese J, Dineen SP, et al. Clonal analysis reveals a common progenitor for endothelial, myeloid, and lymphoid precursors in umbilical cord blood. Circ Res. 2010;107:1460–9. doi:10.1161/CIRCRESAHA.110.223669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Taguchi A, Soma T, Tanaka H, Kanda T, Nishimura H, Yoshikawa H, et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest. 2004;114:330–8. doi:10.1172/JCI20622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kang H-J, Lee H-Y, Na S-H, Chang S-A, Park K-W, Kim H-K, et al. Differential effect of intracoronary infusion of mobilized peripheral blood stem cells by granulocyte colony–stimulating factor on left ventricular function and remodeling in patients with acute myocardial infarction versus old myocardial infarction: the MAGIC Cell-3-DES randomized, controlled trial. Circulation. 2006;114:I-145–I-51. doi:10.1161/circulationaha.105.001107.

    Google Scholar 

  96. Huang P, Li S, Han M, Xiao Z, Yang R, Han ZC. Autologous transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes. Diabetes Care. 2005;28:2155–60.

    Article  PubMed  Google Scholar 

  97. Ishida A, Ohya Y, Sakuda H, Ohshiro K, Higashiuesato Y, Nakaema M, et al. Autologous peripheral blood mononuclear cell implantation for patients with peripheral arterial disease improves limb ischemia. Circ J. 2005;69:1260–5.

    Article  PubMed  Google Scholar 

  98. Lara-Hernandez R, Lozano-Vilardell P, Blanes P, Torreguitart-Mirada N, Galmes A, Besalduch J. Safety and efficacy of therapeutic angiogenesis as a novel treatment in patients with critical limb ischemia. Ann Vasc Surg. 2010;24:287–94. doi:10.1016/j.avsg.2009.10.012.

    Article  CAS  PubMed  Google Scholar 

  99. Lenk K, Adams V, Lurz P, Erbs S, Linke A, Gielen S, et al. Therapeutical potential of blood-derived progenitor cells in patients with peripheral arterial occlusive disease and critical limb ischaemia. Eur Heart J. 2005;26:1903–9. doi:10.1093/eurheartj/ehi285.

    Article  PubMed  Google Scholar 

  100. Huang PP, Yang XF, Li SZ, Wen JC, Zhang Y, Han ZC. Randomised comparison of G-CSF-mobilized peripheral blood mononuclear cells versus bone marrow-mononuclear cells for the treatment of patients with lower limb arteriosclerosis obliterans. Thromb Haemost. 2007;98:1335–42.

    CAS  PubMed  Google Scholar 

  101. Huang PP, Li SZ, Han MZ, Xiao ZJ, Yang RC, Qiu LG, et al. Autologous transplantation of peripheral blood stem cells as an effective therapeutic approach for severe arteriosclerosis obliterans of lower extremities. Thromb Haemost. 2004;91:606–9. doi:10.1160/TH03-06-0343.

    CAS  PubMed  Google Scholar 

  102. Losordo DW, Schatz RA, White CJ, Udelson JE, Veereshwarayya V, Durgin M, et al. Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial. Circulation. 2007;115:3165–72. doi:10.1161/CIRCULATIONAHA.106.687376.

    Article  PubMed  Google Scholar 

  103. Losordo DW, Henry TD, Davidson C, Sup Lee J, Costa MA, Bass T, et al. Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circ Res. 2011;109:428–36. doi:10.1161/CIRCRESAHA.111.245993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Onodera R, Teramukai S, Tanaka S, Kojima S, Horie T, Matoba S, et al. Bone marrow mononuclear cells versus G-CSF-mobilized peripheral blood mononuclear cells for treatment of lower limb ASO: pooled analysis for long-term prognosis. Bone Marrow Transplant. 2011;46:278–84. doi:10.1038/bmt.2010.110.

    Article  CAS  PubMed  Google Scholar 

  105. Kawamoto A, Katayama M, Handa N, Kinoshita M, Takano H, Horii M, et al. Intramuscular transplantation of G-CSF-mobilized CD34(+) cells in patients with critical limb ischemia: a phase I/IIa, multicenter, single-blinded, dose-escalation clinical trial. Stem Cells. 2009;27:2857–64. doi:10.1002/stem.207.

    Article  CAS  PubMed  Google Scholar 

  106. Kinoshita M, Fujita Y, Katayama M, Baba R, Shibakawa M, Yoshikawa K, et al. Long-term clinical outcome after intramuscular transplantation of granulocyte colony stimulating factor-mobilized CD34 positive cells in patients with critical limb ischemia. Atherosclerosis. 2012;224:440–5. doi:10.1016/j.atherosclerosis.2012.07.031.

    Article  CAS  PubMed  Google Scholar 

  107. Fujita Y, Kinoshita M, Furukawa Y, Nagano T, Hashimoto H, Hirami Y, et al. Phase II clinical trial of CD34+ cell therapy to explore endpoint selection and timing in patients with critical limb ischemia. Circ J. 2014;78:490–501.

    Article  CAS  PubMed  Google Scholar 

  108. Losordo DW, Kibbe MR, Mendelsohn F, Marston W, Driver VR, Sharafuddin M, et al. A randomized, controlled pilot study of autologous CD34+ cell therapy for critical limb ischemia. Circ Cardiovasc Interv. 2012;5:821–30. doi:10.1161/CIRCINTERVENTIONS.112.968321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Burt RK, Testori A, Oyama Y, Rodriguez HE, Yaung K, Villa M, et al. Autologous peripheral blood CD133+ cell implantation for limb salvage in patients with critical limb ischemia. Bone Marrow Transplant. 2010;45:111–6. doi:10.1038/bmt.2009.102.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuhiko Kawamoto M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Fujita, Y., Kawamoto, A. (2017). Granulocyte Colony-Stimulating Factor. In: Higashi, Y., Murohara, T. (eds) Therapeutic Angiogenesis. Springer, Singapore. https://doi.org/10.1007/978-981-10-2744-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2744-4_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2743-7

  • Online ISBN: 978-981-10-2744-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics