On the Use of Asynchronous Cellular Automata in Symmetric-Key Cryptography

  • Biswanath SethiEmail author
  • Sukanta Das
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 625)


This paper addresses a symmetric key cryptosystem using rule 57 asynchronous cellular automata. It is experimentally shown that the proposed cryptosystem achieves the avalanche effect after 32000 iterations. The vulnerability of the proposed scheme is discussed and note that, brute-force attack is practically infeasible. The effectiveness of the scheme is compared with other cryptosystems and finally, it is also report that the proposed cryptosystem can easily be implemented in hardware.


Asynchronous cellular automata (ACAs) Reversibility Block cipher Symmetric key cryptosystem 


  1. 1.
    von Neumann, J.: The Theory of Self-reproducing Automata. University of Illinois Press, Urbana and London (1966). Edited by Burks, A.WGoogle Scholar
  2. 2.
    Bao, F.: Cryptanalysis of a new cellular automata cryptosystem. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 416–427. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Kari, J.: Cryptosystems based on reversible cellular automata (1992, preprint)Google Scholar
  4. 4.
    Fatès, N., Thierry, E., Morvan, M., Schabanel, N.: Fully asynchronous behavior of double-quiescent elementary cellular automata. Theor. Comput. Sci. 362, 1–16 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Wolfram, S.: Theory and Applications of Cellular Automata. World Scientific, Singapore (1986)zbMATHGoogle Scholar
  6. 6.
    Sethi, B., Roy, S., Das, S.: Asynchronous cellular automata and pattern classification. Complexity (2016). doi: 10.1002/cplx.21749
  7. 7.
    Mahajan, P., Sachdeva, A.: A study of encryption algorithms AES, DES and RSA for security. Comput. Sci. & Tech. Netw. Web Secur. 13, 15–22 (2013)Google Scholar
  8. 8.
    Sethi, B., Fatès, N., Das, S.: Reversibility of elementary cellular automata under fully asynchronous update. In: Gopal, T.V., Agrawal, M., Li, A., Cooper, S.B. (eds.) TAMC 2014. LNCS, vol. 8402, pp. 39–49. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  9. 9.
    Kari, J.: Reversible cellular automata. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 57–68. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Sarkar, A., Mukherjee, A., Das, S.: Reversibility in asynchronous cellular automata. Complex Syst. 21, 71–84 (2012)MathSciNetGoogle Scholar
  11. 11.
    Feistel, H.: Cryptography and computer privacy. Sci. Am. 228, 15–23 (1973)CrossRefGoogle Scholar
  12. 12.
    Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28, 656–715 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Das, S., Sarkar, A., Sikdar, B.K.: Synthesis of reversible asynchronous cellular automata for pattern generation with specific hamming distance. In: Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2012. LNCS, vol. 7495, pp. 643–652. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Karimi, H., Hosseni, S.M., Jahan, M.V.: On the combination of self-organized systems to generate pseudo-random numbers. Inf. Sci. 221, 371–388 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2016

Authors and Affiliations

  1. 1.Department of Computer Science Engineering and ApplicationsIndira Gandhi Institute of Technology, SarangDhenkanalIndia
  2. 2.Department of Information TechnologyIndian Institute of Engineering Science and Technology, ShibpurHowrahIndia

Personalised recommendations