Skip to main content

Rational Designing of Novel Proteins Through Computational Approaches

  • Chapter
  • First Online:
Book cover Protein Engineering Techniques

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSFOMEBI))

Abstract

Advances in the computational power has bestowed us with several structural bioinformatics tools that one can utilize them to predict the structures/structural models of the unknown proteins without performing any experimental work. Computational designing of protein involves identification of protein-sequences and predicting their folding to specific conformations. It is broadly classified into rational design and de novo design. Initial Protein designing approaches were mostly based on the primary sequence composition of the proteins and did not account for specific secondary or tertiary interactions. Now the advent of novel molecular force fields, protein threading algorithms and libraries of amino acid conformations etc., pushed the boundaries of in silico designing methods in obtaining structural design and characterization with greater accuracy. In current chapter, we will discuss several of the rational designing computational tools that are capable of obtaining structures of unknown polypeptide chains and characterizing the functional hotspots, thus aid the researchers in designing novel functional motifs with minimal bench work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dorn, M., Silva, M.B.E., Buriol, L.S., Lamb, L.C.: Three-dimensional protein structure prediction: Methods and computational strategies. Comput. Biol. Chem. 53, 251–276 (2014)

    Article  Google Scholar 

  2. Khan, F.I., Wei, D.Q., Gu, K.R., Hassan, M.I., Tabrez, S.: Current updates on computer aided protein modeling and designing. Int. J. Biol. Macromol. 85, 48–62 (2016)

    Article  Google Scholar 

  3. Saven, J.G.: Computational protein design: engineering molecular diversity, nonnatural enzymes, nonbiological cofactor complexes, and membrane proteins. Curr. Opin. Chem. Biol. 15, 452–457 (2011)

    Article  Google Scholar 

  4. Tiwari, M.K., Singh, R., Singh, R.K., Kim, I.W., Lee, J.K.: Computational approaches for rational design of proteins with novel functionalities. Comput. Struct. Biotechnol J. 2, e201209002– (2012)

    Google Scholar 

  5. Lutz, S.: Beyond directed evolution–semi-rational protein engineering and design. Curr. Opin. Biotechnol. 21, 734–743 (2010)

    Article  Google Scholar 

  6. Pei, J.: Multiple protein sequence alignment. Curr. Opin. Struct. Biol. 18, 382–386 (2008)

    Article  Google Scholar 

  7. Dagelaite, J., O’Driscoll, A., Sleato,r R.D.: An overview of multiple sequence alingnments and cloud computing in bioinformatics. ISRN Biomath. (2013)

    Google Scholar 

  8. Edgar, R.C.: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC. Bioinform. 5, 113– (2004)

    Google Scholar 

  9. Morgenstern, B.: DIALIGN: multiple DNA and protein sequence alignment at BiBiServ. Nucleic Acids Res. 32, W33–W36 (2004)

    Article  Google Scholar 

  10. Notredame, C., Higgins, D.G.: SAGA: sequence alignment by genetic algorithm. Nucleic Acids Res. 24, 1515–1524 (1996)

    Article  Google Scholar 

  11. Notredame, C., Higgins, D.G., Heringa, J.: T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205–217 (2000)

    Article  Google Scholar 

  12. Edgar, R.C., Batzoglou, S.: Multiple sequence alignment. Curr. Opin. Struct. Biol. 16, 368–373 (2006)

    Article  Google Scholar 

  13. O’Sullivan, O., Suhre, K., Abergel, C., Higgins, D.G., Notredame, C.: 3DCoffee: combining protein sequences and structures within multiple sequence alignments. J. Mol. Biol. 340, 385–395 (2004)

    Article  Google Scholar 

  14. Armougom, F., Moretti, S., Poirot, O., et al.: Expresso: automatic incorporation of structural information in multiple sequence alignments using 3D-Coffee. Nucleic Acids Res. 34, W604–W608 (2006)

    Article  Google Scholar 

  15. Xia, X., Zhang, S., Su, Y., Sun, Z.: MICAlign: a sequence-to-structure alignment tool integrating multiple sources of information in conditional random fields. Bioinformatics 25, 1433–1434 (2009)

    Article  Google Scholar 

  16. Zhang, Z., Schaffer, A.A., Miller, W., et al.: Protein sequence similarity searches using patterns as seeds. Nucleic Acids Res. 26, 3986–3990 (1998)

    Article  Google Scholar 

  17. Frith, M.C., Saunders, N.F., Kobe, B., Bailey, T.L.: Discovering sequence motifs with arbitrary insertions and deletions. PLoS. Comput. Biol. 4, e1000071– (2008)

    Google Scholar 

  18. Thompson, J.D., Linard, B., Lecompte, O., Poch, O.: A comprehensive benchmark study of multiple sequence alignment methods: current challenges and future perspectives. PLoS. One. 6, e18093– (2011)

    Google Scholar 

  19. Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994)

    Article  Google Scholar 

  20. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453 (1970)

    Article  Google Scholar 

  21. Wilbur, W.J., Lipman, D.J.: Rapid similarity searches of nucleic acid and protein data banks. Proc. Natl. Acad. Sci. USA 80, 726–730 (1983)

    Article  Google Scholar 

  22. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987)

    Google Scholar 

  23. Sievers, F., Wilm, A., Dineen, D. et al.: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539– (2011)

    Google Scholar 

  24. Soding, J.: Protein homology detection by HMM-HMM comparison. Bioinformatics 21, 951–960 (2005)

    Article  Google Scholar 

  25. Katoh, K., Standley, D.M.: MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013)

    Article  Google Scholar 

  26. Lassmann, T., Sonnhammer, E.L.: Kalign—an accurate and fast multiple sequence alignment algorithm. BMC. Bioinform. 6, 298– (2005)

    Google Scholar 

  27. Edgar, R.C.: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC. Bioinform. 5, 113– (2004)

    Google Scholar 

  28. Notredame, C., Higgins, D.G., Heringa, J.: T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205–217 (2000)

    Article  Google Scholar 

  29. Steipe, B., Schiller, B., Pluckthun, A., Steinbacher, S.: Sequence statistics reliably predict stabilizing mutations in a protein domain. J. Mol. Biol. 240, 188–192 (1994)

    Article  Google Scholar 

  30. Lehmann, M., Pasamontes, L., Lassen, S.F., Wyss, M.: The consensus concept for thermostability engineering of proteins. Biochim. Biophys. Acta 1543, 408–415 (2000)

    Article  Google Scholar 

  31. Watanabe, K., Ohkuri, T., Yokobori, S., Yamagishi, A.: Designing thermostable proteins: ancestral mutants of 3-isopropylmalate dehydrogenase designed by using a phylogenetic tree. J. Mol. Biol. 355, 664–674 (2006)

    Article  Google Scholar 

  32. Sullivan, B.J., Durani, V., Magliery, T.J.: Triosephosphate isomerase by consensus design: dramatic differences in physical properties and activity of related variants. J. Mol. Biol. 413, 195–208 (2011)

    Article  Google Scholar 

  33. Hohne, M., Schatzle, S., Jochens, H., Robins, K., Bornscheuer, U.T.: Rational assignment of key motifs for function guides in silico enzyme identification. Nat. Chem. Biol. 6, 807–813 (2010)

    Article  Google Scholar 

  34. Ehren, J., Govindarajan, S., Moron, B., Minshull, J., Khosla, C.: Protein engineering of improved prolyl endopeptidases for celiac sprue therapy. Protein Eng. Des. Sel. 21, 699–707 (2008)

    Article  Google Scholar 

  35. Jacobs, S.A., Diem, M.D., Luo, J., et al.: Design of novel FN3 domains with high stability by a consensus sequence approach. Protein Eng. Des. Sel. 25, 107–117 (2012)

    Article  Google Scholar 

  36. Ackerman, S.H., Gatti, D.L.: The contribution of coevolving residues to the stability of KDO8P synthase. PLoS. One. 6, e17459– (2011)

    Google Scholar 

  37. Lovell, S.C., Robertson, D.L.: An integrated view of molecular coevolution in protein-protein interactions. Mol. Biol. Evol. 27, 2567–2575 (2010)

    Article  Google Scholar 

  38. Atchley, W.R., Wollenberg, K.R., Fitch, W.M., Terhalle, W., Dress, A.W.: Correlations among amino acid sites in bHLH protein domains: an information theoretic analysis. Mol. Biol. Evol. 17, 164–178 (2000)

    Article  Google Scholar 

  39. Horner, D.S., Pirovano, W., Pesole, G.: Correlated substitution analysis and the prediction of amino acid structural contacts. Brief. Bioinform. 9, 46–56 (2008)

    Article  Google Scholar 

  40. Kass, I., Horovitz, A.: Mapping pathways of allosteric communication in GroEL by analysis of correlated mutations. Proteins 48, 611–617 (2002)

    Article  Google Scholar 

  41. Larson, S.M., Di Nardo, A.A., Davidson, A.R.: Analysis of covariation in an SH3 domain sequence alignment: applications in tertiary contact prediction and the design of compensating hydrophobic core substitutions. J. Mol. Biol. 303, 433–446 (2000)

    Article  Google Scholar 

  42. Lockless, S.W., Ranganathan, R.: Evolutionarily conserved pathways of energetic connectivity in protein families. Science 286, 295–299 (1999)

    Article  Google Scholar 

  43. Suel, G.M., Lockless, S.W., Wall, M.A., Ranganathan, R.: Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat. Struct. Biol. 10, 59–69 (2003)

    Article  Google Scholar 

  44. Dekker, J.P., Fodor, A., Aldrich, R.W., Yellen, G.: A perturbation-based method for calculating explicit likelihood of evolutionary co-variance in multiple sequence alignments. Bioinformatics 20, 1565–1572 (2004)

    Article  Google Scholar 

  45. Pollock, D.D., Taylor, W.R., Goldman, N.: Coevolving protein residues: maximum likelihood identification and relationship to structure. J. Mol. Biol. 287, 187–198 (1999)

    Article  Google Scholar 

  46. Singer, M.S., Vriend, G., Bywater, R.P.: Prediction of protein residue contacts with a PDB-derived likelihood matrix. Protein Eng. 15, 721–725 (2002)

    Article  Google Scholar 

  47. Cheng, J., Baldi, P.: Improved residue contact prediction using support vector machines and a large feature set. BMC. Bioinform. 8, 113- (2007)

    Google Scholar 

  48. Fariselli, P., Olmea, O., Valencia, A., Casadio, R.: Prediction of contact maps with neural networks and correlated mutations. Protein Eng. 14, 835–843 (2001)

    Article  Google Scholar 

  49. De, J.D., Pazos, F., Valencia, A.: Emerging methods in protein co-evolution. Nat. Rev. Genet. 14, 249–261 (2013)

    Google Scholar 

  50. Fodor, A.A., Aldrich, R.W.: Influence of conservation on calculations of amino acid covariance in multiple sequence alignments. Proteins 56, 211–221 (2004)

    Article  Google Scholar 

  51. Socolich, M., Lockless, S.W., Russ, W.P., Lee, H., Gardner, K.H., Ranganathan, R.: Evolutionary information for specifying a protein fold. Nature 437, 512–518 (2005)

    Article  Google Scholar 

  52. Yip, K.Y., Patel, P., Kim, P.M., Engelman, D.M., McDermott, D., Gerstein, M.: An integrated system for studying residue coevolution in proteins. Bioinformatics 24, 290–292 (2008)

    Article  Google Scholar 

  53. Chen, Z., Meyer, W., Rappert, S., Sun, J., Zeng, A.P.: Coevolutionary analysis enabled rational deregulation of allosteric enzyme inhibition in Corynebacterium glutamicum for lysine production. Appl. Environ. Microbiol. 77, 4352–4360 (2011)

    Article  Google Scholar 

  54. Bonneau, R., Baker, D.: Ab initio protein structure prediction: progress and prospects. Annu. Rev. Biophys. Biomol. Struct. 30, 173–189 (2001)

    Article  Google Scholar 

  55. Case, D.A., Cheatham III, T.E., Darden, T., et al.: The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005)

    Article  Google Scholar 

  56. Christen, M., Hunenberger, P.H., Bakowies, D., et al.: The GROMOS software for biomolecular simulation: GROMOS05. J. Comput. Chem. 26, 1719–1751 (2005)

    Article  Google Scholar 

  57. Van Der, S.D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.: GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005)

    Article  Google Scholar 

  58. Jorgensen, W., Maxwell, D., Tirado-Rives, J.: Devalopment and testing of the opls all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996)

    Article  Google Scholar 

  59. Momany, F., McGuire, R., Burgess, A., Scheraga, H.: Energy parameters in polypeptides Vii, geometric parameters, partial charges, non-bonded interactions, hydrogen bond interactions and intrinsic torsional potentials for naturally occuring amino aciods. J. Phys. Chem. 79, 2561–2581 (1975)

    Article  Google Scholar 

  60. Chivian, D., Robertson, T., Bonneau, R., Baker, D.: Ab initio methods. Methods Biochem. Anal. 44, 547–557 (2003)

    Google Scholar 

  61. Zhang, Y., Skolnick, J.: Scoring function for automated assessment of protein structure template quality. Proteins 57, 702–710 (2004)

    Article  Google Scholar 

  62. Pokala, N., Handel, T.M.: Review: protein design—where we were, where we are, where we’re going. J. Struct. Biol. 134, 269–281 (2001)

    Article  Google Scholar 

  63. Liwo, A., Lee, J., Ripoll, D.R., Pillardy, J., Scheraga, H.A.: Protein structure prediction by global optimization of a potential energy function. Proc. Natl. Acad. Sci. USA 96, 5482–5485 (1999)

    Article  Google Scholar 

  64. Subramani, A., Wei, Y., Floudas, C.A.: ASTRO-FOLD 2.0: an enhanced framework for protein structure prediction. AIChE J. 58, 1619–1637 (2012)

    Article  Google Scholar 

  65. Srinivasan, R., Rose, G.D.: Ab initio prediction of protein structure using LINUS. Proteins 47, 489–495 (2002)

    Article  Google Scholar 

  66. Jayaram, B., Bhushan, K., Shenoy, S.R., et al.: Bhageerath: an energy based web enabled computer software suite for limiting the search space of tertiary structures of small globular proteins. Nucleic Acids Res. 34, 6195–6204 (2006)

    Article  Google Scholar 

  67. Zhang, Y.: Template-based modeling and free modeling by I-TASSER in CASP7. Proteins 69(Suppl 8), 108–117 (2007)

    Article  Google Scholar 

  68. Rohl, C.A., Strauss, C.E., Misura, K.M., Baker, D.: Protein structure prediction using Rosetta. Methods Enzymol. 383, 66–93 (2004)

    Article  Google Scholar 

  69. Das, R., Qian, B., Raman, S., et al.: Structure prediction for CASP7 targets using extensive all-atom refinement with Rosetta@home. Proteins 69(8), 118–128 (2007)

    Article  Google Scholar 

  70. Jones, D.T.: Predicting novel protein folds by using FRAGFOLD. Proteins Suppl 5, 127–132 (2001)

    Article  Google Scholar 

  71. Blaszczyk, M., Jamroz, M., Kmiecik, S., Kolinski, A.: CABS-fold: server for the de novo and consensus-based prediction of protein structure. Nucleic Acids Res. 41, W406–W411 (2013)

    Article  Google Scholar 

  72. Lee, J., Kim, S.Y., Joo, K., Kim, I., Lee, J.: Prediction of protein tertiary structure using PROFESY, a novel method based on fragment assembly and conformational space annealing. Proteins 56, 704–714 (2004)

    Article  Google Scholar 

  73. Dorn, M., de Souza, O.N.: Mining the protein data bank with CReF to predict approximate 3-D structures of polypeptides. Int. J. Data Min. Bioinform. 4, 281–299 (2010)

    Google Scholar 

  74. Xu, D., Zhang, Y.: Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins 80, 1715–1735 (2012)

    Article  Google Scholar 

  75. Karplus, K., Karchin, R., Draper, J., et al.: Combining local-structure, fold-recognition, and new fold methods for protein structure prediction. Proteins 53(Suppl 6), 491–496 (2003)

    Article  Google Scholar 

  76. Ishida, T., Nishimura, T., Nozaki, M., et al.: Development of an ab initio protein structure prediction system ABLE. Genome Inform. 14, 228–237 (2003)

    Google Scholar 

  77. Li, S.C., Bu, D., Xu, J., Li, M.: Fragment-HMM: a new approach to protein structure prediction. Protein Sci. 17, 1925–1934 (2008)

    Article  Google Scholar 

  78. Wu, S., Zhang, Y.: ANGLOR: a composite machine-learning algorithm for protein backbone torsion angle prediction. PLoS. One. 3, e3400 (2008)

    Google Scholar 

  79. Rost, B.: PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol. 266, 525–539 (1996)

    Article  Google Scholar 

  80. Xiang, Z.: Advances in homology protein structure modeling. Curr. Protein Pept. Sci. 7, 217–227 (2006)

    Article  Google Scholar 

  81. Floudas, C.A.: Computational methods in protein structure prediction. Biotechnol. Bioeng. 97, 207–213 (2007)

    Article  Google Scholar 

  82. Arnold, K., Bordoli, L., Kopp, J., Schwede, T.: The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201 (2006)

    Article  Google Scholar 

  83. Eswar, N., Webb, B., Marti-Renom, M.A. et al.: Comparative protein structure modeling using MODELLER. Curr. Protoc. Protein Sci. Chap. 2, (2007)

    Google Scholar 

  84. Lyras, D.P., Metzler, D.: ReformAlign: improved multiple sequence alignments using a profile-based meta-alignment approach. BMC. Bioinform. 15, 265– (2014)

    Google Scholar 

  85. Bramucci, E., Paiardini, A., Bossa, F., Pascarella, S.: PyMod: sequence similarity searches, multiple sequence-structure alignments, and homology modeling within PyMOL. BMC. Bioinform. 13(4), S2– (2012)

    Google Scholar 

  86. Debe, D.A., Danzer, J.F., Goddard, W.A., Poleksic, A.: STRUCTFAST: protein sequence remote homology detection and alignment using novel dynamic programming and profile-profile scoring. Proteins 64, 960–967 (2006)

    Article  Google Scholar 

  87. Sadreyev, R., Grishin, N.: COMPASS: a tool for comparison of multiple protein alignments with assessment of statistical significance. J. Mol. Biol. 326, 317–336 (2003)

    Article  Google Scholar 

  88. Kelley, L.A., Sternberg, M.J.: Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4, 363–371 (2009)

    Article  Google Scholar 

  89. Karplus, K., Karchin, R., Barrett, C., et al.: What is the value added by human intervention in protein structure prediction? Proteins Suppl. 5, 86–91 (2001)

    Article  Google Scholar 

  90. Karplus, K., Barrett, C., Hughey, R.: Hidden Markov models for detecting remote protein homologies. Bioinformatics 14, 846–856 (1998)

    Article  Google Scholar 

  91. Kelley, L.A., MacCallum, R.M., Sternberg, M.J.: Enhanced genome annotation using structural profiles in the program 3D-PSSM. J. Mol. Biol. 299, 499–520 (2000)

    Article  Google Scholar 

  92. Soding, J.: Protein homology detection by HMM-HMM comparison. Bioinformatics 21, 951–960 (2005)

    Article  Google Scholar 

  93. Shi, J., Blundell, T.L., Mizuguchi, K.: FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J. Mol. Biol. 310, 243–257 (2001)

    Article  Google Scholar 

  94. Bates, P.A., Kelley, L.A., MacCallum, R.M., Sternberg, M.J.: Enhancement of protein modeling by human intervention in applying the automatic programs 3D-JIGSAW and 3D-PSSM. Proteins Suppl. 5, 39–46 (2001)

    Article  Google Scholar 

  95. Eyrich, V.A., Rost, B.: META-PP: single interface to crucial prediction servers. Nucleic Acids Res. 31, 3308–3310 (2003)

    Article  Google Scholar 

  96. Kim, D.E., Chivian, D., Baker, D.: Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 32, W526–W531 (2004)

    Article  Google Scholar 

  97. Arnold, K., Bordoli, L., Kopp, J., Schwede, T.: The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201 (2006)

    Article  Google Scholar 

  98. Bordoli, L., Schwede, T.: Automated protein structure modeling with SWISS-MODEL workspace and the protein model portal. Methods Mol. Biol. 857, 107–136 (2012)

    Article  Google Scholar 

  99. Vriend, G.: WHAT IF: a molecular modeling and drug design program. J. Mol. Graph. 8, 52–6, 29 (1990)

    Google Scholar 

  100. Benkert, P., Tosatto, S.C., Schomburg, D.: QMEAN: a comprehensive scoring function for model quality assessment. Proteins 71, 261–277 (2008)

    Article  Google Scholar 

  101. Eswar, N., Webb, B., Marti-Renom, M.A. et al.: Comparative protein structure modeling using MODELLER. Curr. Protoc. Protein Sci. Chap. 2 (2007)

    Google Scholar 

  102. Kim, D.E., Chivian, D., Baker, D.: Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 32, W526–W531 (2004)

    Article  Google Scholar 

  103. Chivian, D., Kim, D.E., Malmstrom, L., et al.: Automated prediction of CASP-5 structures using the Robetta server. Proteins 53(6), 524–533 (2003)

    Article  Google Scholar 

  104. David, R., Korenberg, M.J., Hunter, I.W.: 3D-1D threading methods for protein fold recognition. Pharmacogenomics 1, 445–455 (2000)

    Article  Google Scholar 

  105. Jones, D.T.: GenTHREADER: an efficient and reliable protein fold recognition method for genomic sequences. J. Mol. Biol. 287, 797–815 (1999)

    Article  Google Scholar 

  106. Lobley, A., Sadowski, M.I., Jones, D.T.: pGenTHREADER and pDomTHREADER: new methods for improved protein fold recognition and superfamily discrimination. Bioinformatics 25, 1761–1767 (2009)

    Article  Google Scholar 

  107. Ginalski, K., Pas, J., Wyrwicz, L.S., Von, G.M., Bujnicki, J.M., Rychlewski, L.: Detection of distant homology using sequence profiles and predicted secondary structure. Nucleic Acids Res. 31, 3804–3807 (2003)

    Article  Google Scholar 

  108. Kim, D., Xu, D., Guo, J.T., Ellrott, K., Xu, Y.: PROSPECT II: protein structure prediction program for genome-scale applications. Protein Eng. 16, 641–650 (2003)

    Article  Google Scholar 

  109. Gniewek, P., Kolinski, A., Kloczkowski, A., Gront, D.: BioShell-Threading: versatile Monte Carlo package for protein 3D threading. BMC. Bioinform. 15, 22– (2014)

    Google Scholar 

  110. Xu, D., Jaroszewski, L., Li, Z., Godzik, A.: FFAS-3D: improving fold recognition by including optimized structural features and template re-ranking. Bioinformatics 30, 660–667 (2014)

    Article  Google Scholar 

  111. Kallberg, M., Wang, H., Wang, S., et al.: Template-based protein structure modeling using the RaptorX web server. Nat. Protoc. 7, 1511–1522 (2012)

    Article  Google Scholar 

  112. Soding, J., Biegert, A., Lupas, A.N.: The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W248 (2005)

    Article  Google Scholar 

  113. Teodorescu, O., Galor, T., Pillardy, J., Elber, R.: Enriching the sequence substitution matrix by structural information. Proteins 54, 41–48 (2004)

    Article  Google Scholar 

  114. Yang, Y., Faraggi, E., Zhao, H., Zhou, Y.: Improving protein fold recognition and template-based modeling by employing probabilistic-based matching between predicted one-dimensional structural properties of query and corresponding native properties of templates. Bioinformatics 27, 2076–2082 (2011)

    Article  Google Scholar 

  115. Wu, S., Zhang, Y.: Recognizing protein substructure similarity using segmental threading. Structure 18, 858–867 (2010)

    Article  Google Scholar 

  116. Jones, D.T., Miller, R.T., Thornton, J.M.: Successful protein fold recognition by optimal sequence threading validated by rigorous blind testing. Proteins 23, 387–397 (1995)

    Article  Google Scholar 

  117. Lambert, C., Leonard, N., De Bolle, X., Depiereux, E.: Prediction of proteins 3D structures. Bioinformatics 18, 1250–1256 (2002)

    Article  Google Scholar 

  118. Ota, M., Nishikawa, K.: Assessment of pseudo-energy potentials by the best-five test: a new use of the three-dimensional profiles of proteins. Protein Eng. 10, 339–351 (1997)

    Article  Google Scholar 

  119. Rost, B.: TOPITS: threading one-dimensional predictions into three-dimensional structures. Proc. Int. Conf. Intell. Syst. Mol. Biol. 3, 314–321 (1995)

    Google Scholar 

  120. Xu, J., Li, M., Kim, D., Xu, Y.: RAPTOR: optimal protein threading by linear programming. J. Bioinform. Comput. Biol. 1, 95–117 (2003)

    Article  Google Scholar 

  121. Mukherjee, S., Zhang, Y.: Protein-protein complex structure predictions by multimeric threading and template recombination. Structure 19, 955–966 (2011)

    Article  Google Scholar 

  122. Wu, S., Zhang, Y.: MUSTER: Improving protein sequence profile-profile alignments by using multiple sources of structure information. Proteins 72, 547–556 (2008)

    Article  Google Scholar 

  123. Ginalski, K., Elofsson, A., Fischer, D., Rychlewski, L.: 3D-Jury: a simple approach to improve protein structure predictions. Bioinformatics 19, 1015–1018 (2003)

    Article  Google Scholar 

  124. Wu, S., Zhang, Y.: LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Res. 35, 3375–3382 (2007)

    Article  Google Scholar 

  125. Sasin, J.M., Kurowski, M.A., Bujnicki, J.M.: STRUCLA: a WWW meta-server for protein structure comparison and evolutionary classification. Bioinformatics 19(Suppl 1), i252–i254 (2003)

    Article  Google Scholar 

  126. Barthel, D., Hirst, J.D., Blazewicz, J., Burke, E.K., Krasnogor, N.: ProCKSI: a decision support system for protein (structure) comparison, knowledge, similarity and information. BMC. Bioinform. 8, 416– (2007)

    Google Scholar 

  127. Zhou, H., Skolnick, J.: Ab initio protein structure prediction using chunk-TASSER. Biophys. J. 93, 1510–1518 (2007)

    Google Scholar 

  128. Ginalski, K.: Comparative modeling for protein structure prediction. Curr. Opin. Struct. Biol. 16, 172–177 (2006)

    Article  Google Scholar 

  129. Vriend, G.: WHAT IF: a molecular modeling and drug design program. J. Mol. Graph. 8, 52–6, 29 (1990)

    Google Scholar 

  130. Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R., Thornton, J.M.: AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996)

    Article  Google Scholar 

  131. Hooft, R.W., Vriend, G., Sander, C., Abola, E.E.: Errors in protein structures. Nature 381, 272– (1996)

    Google Scholar 

  132. Kihara, D., Chen, H., Yang, Y.D.: Quality assessment of protein structure models. Curr. Protein Pept. Sci. 10, 216–228 (2009)

    Article  Google Scholar 

  133. Benkert, P., Tosatto, S.C., Schomburg, D.: QMEAN: a comprehensive scoring function for model quality assessment. Proteins 71, 261–277 (2008)

    Article  Google Scholar 

  134. Sippl, M.J.: Knowledge-based potentials for proteins. Curr. Opin. Struct. Biol. 5, 229–235 (1995)

    Article  Google Scholar 

  135. Eisenberg, D., Luthy, R., Bowie, J.U.: VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol. 277, 396–404 (1997)

    Article  Google Scholar 

  136. Topham, C.M., Srinivasan, N., Thorpe, C.J., Overington, J.P., Kalsheker, N.A.: Comparative modelling of major house dust mite allergen Der p I: structure validation using an extended environmental amino acid propensity table. Protein Eng. 7, 869–894 (1994)

    Article  Google Scholar 

  137. Melo, F., Feytmans, E.: Assessing protein structures with a non-local atomic interaction energy. J. Mol. Biol. 277, 1141–1152 (1998)

    Article  Google Scholar 

  138. Choi, S.H., Kim, H.S., Lee, E.Y.: Comparative homology modeling-inspired protein engineering for improvement of catalytic activity of Mugil cephalus epoxide hydrolase. Biotechnol. Lett. 31, 1617–1624 (2009)

    Article  Google Scholar 

  139. Qi, X., Guo, Q., Wei, Y., Xu, H., Huang, R.: Enhancement of pH stability and activity of glycerol dehydratase from Klebsiella pneumoniae by rational design. Biotechnol. Lett. 34, 339–346 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Mohan Poluri .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Poluri, K.M., Gulati, K. (2017). Rational Designing of Novel Proteins Through Computational Approaches. In: Protein Engineering Techniques. SpringerBriefs in Applied Sciences and Technology(). Springer, Singapore. https://doi.org/10.1007/978-981-10-2732-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2732-1_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2731-4

  • Online ISBN: 978-981-10-2732-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics