Advertisement

Kidney

  • Bum Soo KimEmail author
  • Hyun Tae Kim
Chapter
  • 818 Downloads

Abstract

The kidney is a vital organ which plays various important roles in humans’ body, including excretion of waste products, production of erythropoietin, and maintenance of systemic blood pressure through regulation of fluid volume and electrolytes. The nephrons, which are the functional units of the kidney, maintain these renal functions. Specific conditions, such as hypertension, diabetes, glomerulonephritis, and nephrotoxic drugs, can cause the damage of nephrons, and if damages persist to progress, renal function gradually deteriorates, and the kidney finally enters the state of renal failure.

References

  1. 1.
    Jha V, Garcia-Garcia G. Global kidney disease – authors’ reply. Lancet. 2013;382:1244.PubMedCrossRefGoogle Scholar
  2. 2.
    McCampbell KK, Wingert RA. Renal stem cells: fact or science fiction? Biochem J. 2012;444:153–68.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Li Y, Wingert RA. Regenerative medicine for the kidney: stem cell prospects & challenges. Clin Transl Med. 2013;2:11.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Chung HC, Ko IK, Atala A, Yoo JJ. Cell-based therapy for kidney disease. Korean journal of urology. 2015;56:412–21.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Wolfe RA, Ashby VB, Milford EL, Ojo AO, Ettenger RE, Agodoa LY, et al. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N Engl J Med. 1999;341:1725–30.PubMedCrossRefGoogle Scholar
  6. 6.
    Katari R, Peloso A, Zambon JP, Soker S, Stratta RJ, Atala A, et al. Renal bioengineering with scaffolds generated from human kidneys. Nephron Exp Nephrol. 2014;126:119.PubMedCrossRefGoogle Scholar
  7. 7.
    Fukui A, Yokoo T. Kidney regeneration using developing xenoembryo. Curr Opin Organ Transplant. 2015;20:160–4.PubMedCrossRefGoogle Scholar
  8. 8.
    Chan TC, Ariizumi T, Asashima M. A model system for organ engineering: transplantation of in vitro induced embryonic kidney. Naturwissenschaften. 1999;86:224–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Xinaris C, Yokoo T. Reforming the kidney starting from a single-cell suspension. Nephron Exp Nephrol. 2014;126:107–12.PubMedCrossRefGoogle Scholar
  10. 10.
    Locatelli F, Buoncristiani U, Canaud B, Kohler H, Petitclerc T, Zucchelli P. Dialysis dose and frequency. Nephrol Dial Transplant. 2005;20:285–96.PubMedCrossRefGoogle Scholar
  11. 11.
    Maeshima A, Nakasatomi M, Nojima Y. Regenerative medicine for the kidney: renotropic factors, renal stem/progenitor cells, and stem cell therapy. Biomed Res Int. 2014;2014:1–10.Google Scholar
  12. 12.
    Strutz F, Okada H, Lo CW, Danoff T, Carone RL, Tomaszewski JE, et al. Identification and characterization of a fibroblast marker: FSP1. J Cell Biol. 1995;130:393–405.PubMedCrossRefGoogle Scholar
  13. 13.
    Cornacchia F, Fornoni A, Plati AR, Thomas A, Wang Y, Inverardi L, et al. Glomerulosclerosis is transmitted by bone marrow-derived mesangial cell progenitors. J Clin Invest. 2001;108:1649–56.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Imasawa T, Utsunomiya Y, Kawamura T, Zhong Y, Nagasawa R, Okabe M, et al. The potential of bone marrow-derived cells to differentiate to glomerular mesangial cells. J Am Soc Nephrol. 2001;12:1401–9.PubMedGoogle Scholar
  15. 15.
    Ito T, Suzuki A, Imai E, Okabe M, Hori M. Bone marrow is a reservoir of repopulating mesangial cells during glomerular remodeling. J Am Soc Nephrol. 2001;12:2625–35.PubMedGoogle Scholar
  16. 16.
    Ito T, Suzuki A, Okabe M, Imai E, Hori M. Application of bone marrow-derived stem cells in experimental nephrology. Exp Nephrol. 2001;9:444–50.PubMedCrossRefGoogle Scholar
  17. 17.
    Poulsom R, Forbes SJ, Hodivala-Dilke K, Ryan E, Wyles S, Navaratnarasah S, et al. Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol. 2001;195:229–35.PubMedCrossRefGoogle Scholar
  18. 18.
    Witzgall R, Brown D, Schwarz C, Bonventre JV. Localization of proliferating cell nuclear antigen, vimentin, c-Fos, and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells. J Clin Invest. 1994;93:2175–88.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Bonventre JV. Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J Am Soc Nephrol. 2003;14(Suppl 1):S55–61.PubMedCrossRefGoogle Scholar
  20. 20.
    Bussolati B, Bruno S, Grange C, Buttiglieri S, Deregibus MC, Cantino D, et al. Isolation of renal progenitor cells from adult human kidney. Am J Pathol. 2005;166:545–55.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Lazzeri E, Crescioli C, Ronconi E, Mazzinghi B, Sagrinati C, Netti GS, et al. Regenerative potential of embryonic renal multipotent progenitors in acute renal failure. J Am Soc Nephrol. 2007;18:3128–38.PubMedCrossRefGoogle Scholar
  22. 22.
    Angelotti ML, Ronconi E, Ballerini L, Peired A, Mazzinghi B, Sagrinati C, et al. Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury. Stem Cells. 2012;30:1714–25.PubMedCrossRefGoogle Scholar
  23. 23.
    Humphreys BD, Valerius MT, Kobayashi A, Mugford JW, Soeung S, Duffield JS, et al. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell. 2008;2:284–91.PubMedCrossRefGoogle Scholar
  24. 24.
    Sagrinati C, Netti GS, Mazzinghi B, Lazzeri E, Liotta F, Frosali F, et al. Isolation and characterization of multipotent progenitor cells from the Bowman's capsule of adult human kidneys. J Am Soc Nephrol. 2006;17:2443–56.PubMedCrossRefGoogle Scholar
  25. 25.
    Romagnani P, Remuzzi G. Renal progenitors in non-diabetic and diabetic nephropathies. Trends Endocrinol Metab. 2013;24:13–20.PubMedCrossRefGoogle Scholar
  26. 26.
    Grobstein C. Trans-filter induction of tubules in mouse metanephrogenic mesenchyme. Exp Cell Res. 1956;10:424–40.PubMedCrossRefGoogle Scholar
  27. 27.
    Grobstein C. Inductive tissue interaction in development. Adv Cancer Res. 1956;4:187–236.PubMedCrossRefGoogle Scholar
  28. 28.
    Kitamura S, Yamasaki Y, Kinomura M, Sugaya T, Sugiyama H, Maeshima Y, et al. Establishment and characterization of renal progenitor like cells from S3 segment of nephron in rat adult kidney. FASEB J. 2005;19:1789–97.PubMedCrossRefGoogle Scholar
  29. 29.
    Lindgren D, Bostrom AK, Nilsson K, Hansson J, Sjolund J, Moller C, et al. Isolation and characterization of progenitor-like cells from human renal proximal tubules. Am J Pathol. 2011;178:828–37.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Maeshima A, Yamashita S, Nojima Y. Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidney. J Am Soc Nephrol. 2003;14:3138–46.PubMedCrossRefGoogle Scholar
  31. 31.
    Bruno S, Camussi G. Isolation and characterization of resident mesenchymal stem cells in human glomeruli. Methods Mol Biol. 2012;879:367–80.PubMedCrossRefGoogle Scholar
  32. 32.
    Oliver JA, Maarouf O, Cheema FH, Martens TP, Al-Awqati Q. The renal papilla is a niche for adult kidney stem cells. J Clin Invest. 2004;114:795–804.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver G, et al. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell. 2008;3:169–81.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Self M, Lagutin OV, Bowling B, Hendrix J, Cai Y, Dressler GR, et al. Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J. 2006;25:5214–28.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Guimaraes-Souza NK, Yamaleyeva LM, AbouShwareb T, Atala A, Yoo JJ. In vitro reconstitution of human kidney structures for renal cell therapy. Nephrol Dial Transplant. 2012;27:3082–90.PubMedCrossRefGoogle Scholar
  36. 36.
    Lazzeri E, Ronconi E, Angelotti ML, Peired A, Mazzinghi B, Becherucci F, et al. Human urine-derived renal progenitors for personalized modeling of genetic kidney disorders. J Am Soc Nephrol. 2015;26:1961–74.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Weissman IL, Anderson DJ, Gage F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol. 2001;17:387–403.PubMedCrossRefGoogle Scholar
  38. 38.
    Coskun V, Wu H, Blanchi B, Tsao S, Kim K, Zhao J, et al. CD133+ neural stem cells in the ependyma of mammalian postnatal forebrain. Proc Natl Acad Sci U S A. 2008;105:1026–31.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Ivanova L, Hiatt MJ, Yoder MC, Tarantal AF, Matsell DG. Ontogeny of CD24 in the human kidney. Kidney Int. 2010;77:1123–31.PubMedCrossRefGoogle Scholar
  40. 40.
    Pleniceanu O, Harari-Steinberg O, Dekel B. Concise review: kidney stem/progenitor cells: differentiate, sort out, or reprogram? Stem Cells. 2010;28:1649–60.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Hendry CE, Little MH. Reprogramming the kidney: a novel approach for regeneration. Kidney Int. 2012;82:138–46.PubMedCrossRefGoogle Scholar
  42. 42.
    Kusaba T, Lalli M, Kramann R, Kobayashi A, Humphreys BD. Differentiated kidney epithelial cells repair injured proximal tubule. Proc Natl Acad Sci U S A. 2014;111:1527–32.PubMedCrossRefGoogle Scholar
  43. 43.
    Humphreys BD, Czerniak S, DiRocco DP, Hasnain W, Cheema R, Bonventre JV. Repair of injured proximal tubule does not involve specialized progenitors. Proc Natl Acad Sci U S A. 2011;108:9226–31.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Smeets B, Boor P, Dijkman H, Sharma SV, Jirak P, Mooren F, et al. Proximal tubular cells contain a phenotypically distinct, scattered cell population involved in tubular regeneration. J Pathol. 2013;229:645–59.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Berger K, Bangen JM, Hammerich L, Liedtke C, Floege J, Smeets B, et al. Origin of regenerating tubular cells after acute kidney injury. Proc Natl Acad Sci U S A. 2014;111:1533–8.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Dekel B, Shezen E, Even-Tov-Friedman S, Katchman H, Margalit R, Nagler A, et al. Transplantation of human hematopoietic stem cells into ischemic and growing kidneys suggests a role in vasculogenesis but not tubulogenesis. Stem Cells. 2006;24:1185–93.PubMedCrossRefGoogle Scholar
  47. 47.
    Duffield JS, Park KM, Hsiao LL, Kelley VR, Scadden DT, Ichimura T, et al. Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest. 2005;115:1743–55.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Friedenstein AJ, Latzinik NW, Grosheva AG, Gorskaya UF. Marrow microenvironment transfer by heterotopic transplantation of freshly isolated and cultured cells in porous sponges. Exp Hematol. 1982;10:217–27.PubMedGoogle Scholar
  49. 49.
    Bi B, Schmitt R, Israilova M, Nishio H, Cantley LG. Stromal cells protect against acute tubular injury via an endocrine effect. J Am Soc Nephrol. 2007;18:2486–96.PubMedCrossRefGoogle Scholar
  50. 50.
    Imberti B, Morigi M, Tomasoni S, Rota C, Corna D, Longaretti L, et al. Insulin-like growth factor-1 sustains stem cell mediated renal repair. J Am Soc Nephrol. 2007;18:2921–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Togel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol. 2005;289:F31–42.PubMedCrossRefGoogle Scholar
  52. 52.
    Togel F, Cohen A, Zhang P, Yang Y, Hu Z, Westenfelder C. Autologous and allogeneic marrow stromal cells are safe and effective for the treatment of acute kidney injury. Stem Cells Dev. 2009;18:475–85.PubMedCrossRefGoogle Scholar
  53. 53.
    Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3:301–13.PubMedCrossRefGoogle Scholar
  54. 54.
    da Silva ML, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 2006;119:2204–13.CrossRefGoogle Scholar
  55. 55.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy. 2005;7:393–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Nombela-Arrieta C, Ritz J, Silberstein LE. The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol. 2011;12:126–31.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Salem HK, Thiemermann C. Mesenchymal stromal cells: current understanding and clinical status. Stem Cells. 2010;28:585–96.PubMedGoogle Scholar
  60. 60.
    Pelekanos RA, Li J, Gongora M, Chandrakanthan V, Scown J, Suhaimi N, et al. Comprehensive transcriptome and immunophenotype analysis of renal and cardiac MSC-like populations supports strong congruence with bone marrow MSC despite maintenance of distinct identities. Stem Cell Res. 2012;8:58–73.PubMedCrossRefGoogle Scholar
  61. 61.
    Matsumoto K, Mizuno S, Nakamura T. Hepatocyte growth factor in renal regeneration, renal disease and potential therapeutics. Curr Opin Nephrol Hypertens. 2000;9:395–402.PubMedCrossRefGoogle Scholar
  62. 62.
    Humes HD, Cieslinski DA, Coimbra TM, Messana JM, Galvao C. Epidermal growth factor enhances renal tubule cell regeneration and repair and accelerates the recovery of renal function in postischemic acute renal failure. J Clin Invest. 1989;84:1757–61.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Sakai M, Zhang M, Homma T, Garrick B, Abraham JA, McKanna JA, et al. Production of heparin binding epidermal growth factor-like growth factor in the early phase of regeneration after acute renal injury. Isolation and localization of bioactive molecules. J Clin Invest. 1997;99:2128–38.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Homma T, Sakai M, Cheng HF, Yasuda T, Coffey RJ Jr, Harris RC. Induction of heparin-binding epidermal growth factor-like growth factor mRNA in rat kidney after acute injury. J Clin Invest. 1995;96:1018–25.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, et al. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med. 2003;9:964–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Vukicevic S, Basic V, Rogic D, Basic N, Shih MS, Shepard A, et al. Osteogenic protein-1 (bone morphogenetic protein-7) reduces severity of injury after ischemic acute renal failure in rat. J Clin Invest. 1998;102:202–14.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Ding H, Kopple JD, Cohen A, Hirschberg R. Recombinant human insulin-like growth factor-I accelerates recovery and reduces catabolism in rats with ischemic acute renal failure. J Clin Invest. 1993;91:2281–7.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Miller SB, Martin DR, Kissane J, Hammerman MR. Insulin-like growth factor I accelerates recovery from ischemic acute tubular necrosis in the rat. Proc Natl Acad Sci U S A. 1992;89:11876–80.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Nakagawa T, Sasahara M, Haneda M, Kataoka H, Nakagawa H, Yagi M, et al. Role of PDGF B-chain and PDGF receptors in rat tubular regeneration after acute injury. Am J Pathol. 1999;155:1689–99.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Yanagita M, Okuda T, Endo S, Tanaka M, Takahashi K, Sugiyama F, et al. Uterine sensitization-associated gene-1 (USAG-1), a novel BMP antagonist expressed in the kidney, accelerates tubular injury. J Clin Invest. 2006;116:70–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Imgrund M, Grone E, Grone HJ, Kretzler M, Holzman L, Schlondorff D, et al. Re-expression of the developmental gene Pax-2 during experimental acute tubular necrosis in mice 1. Kidney Int. 1999;56:1423–31.PubMedCrossRefGoogle Scholar
  72. 72.
    Yoshino J, Monkawa T, Tsuji M, Hayashi M, Saruta T. Leukemia inhibitory factor is involved in tubular regeneration after experimental acute renal failure. J Am Soc Nephrol. 2003;14:3090–101.PubMedCrossRefGoogle Scholar
  73. 73.
    Terada Y, Tanaka H, Okado T, Shimamura H, Inoshita S, Kuwahara M, et al. Expression and function of the developmental gene Wnt-4 during experimental acute renal failure in rats. J Am Soc Nephrol. 2003;14:1223–33.PubMedCrossRefGoogle Scholar
  74. 74.
    Chen J, Chen JK, Harris RC. Deletion of the epidermal growth factor receptor in renal proximal tubule epithelial cells delays recovery from acute kidney injury. Kidney Int. 2012;82:45–52.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Sugimoto H, LeBleu VS, Bosukonda D, Keck P, Taduri G, Bechtel W, et al. Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis. Nat Med. 2012;18:396–404.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Zhou D, Tan RJ, Lin L, Zhou L, Liu Y. Activation of hepatocyte growth factor receptor, c-met, in renal tubules is required for renoprotection after acute kidney injury. Kidney Int. 2013;84:509–20.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Maeshima A, Miya M, Mishima K, Yamashita S, Kojima I, Nojima Y. Activin A: autocrine regulator of kidney development and repair. Endocr J. 2008;55:1–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Maeshima A, Nojima Y, Kojima I. The role of the activin-follistatin system in the developmental and regeneration processes of the kidney. Cytokine Growth Factor Rev. 2001;12:289–98.PubMedCrossRefGoogle Scholar
  79. 79.
    Maeshima A, Sakurai H, Choi Y, Kitamura S, Vaughn DA, Tee JB, et al. Glial cell-derived neurotrophic factor independent ureteric bud outgrowth from the Wolffian duct. J Am Soc Nephrol. 2007;18:3147–55.PubMedCrossRefGoogle Scholar
  80. 80.
    Maeshima A, Vaughn DA, Choi Y, Nigam SK. Activin A is an endogenous inhibitor of ureteric bud outgrowth from the Wolffian duct. Dev Biol. 2006;295:473–85.PubMedCrossRefGoogle Scholar
  81. 81.
    Maeshima A, Yamashita S, Maeshima K, Kojima I, Nojima Y. Activin a produced by ureteric bud is a differentiation factor for metanephric mesenchyme. J Am Soc Nephrol. 2003;14:1523–34.PubMedCrossRefGoogle Scholar
  82. 82.
    Maeshima A, Zhang YQ, Furukawa M, Naruse T, Kojima I. Hepatocyte growth factor induces branching tubulogenesis in MDCK cells by modulating the activin-follistatin system. Kidney Int. 2000;58:1511–22.PubMedCrossRefGoogle Scholar
  83. 83.
    Ritvos O, Tuuri T, Eramaa M, Sainio K, Hilden K, Saxen L, et al. Activin disrupts epithelial branching morphogenesis in developing glandular organs of the mouse. Mech Dev. 1995;50:229–45.PubMedCrossRefGoogle Scholar
  84. 84.
    Maeshima A, Zhang YQ, Nojima Y, Naruse T, Kojima I. Involvement of the activin-follistatin system in tubular regeneration after renal ischemia in rats. J Am Soc Nephrol. 2001;12:1685–95.PubMedGoogle Scholar
  85. 85.
    Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5:953–64.PubMedCrossRefGoogle Scholar
  86. 86.
    Ricardo SD, van Goor H, Eddy AA. Macrophage diversity in renal injury and repair. J Clin Invest. 2008;118:3522–30.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Wyburn KR, Jose MD, Wu H, Atkins RC, Chadban SJ. The role of macrophages in allograft rejection. Transplantation. 2005;80:1641–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Kluth DC, Erwig LP, Rees AJ. Multiple facets of macrophages in renal injury. Kidney Int. 2004;66:542–57.PubMedCrossRefGoogle Scholar
  89. 89.
    Sean Eardley K, Cockwell P. Macrophages and progressive tubulointerstitial disease. Kidney Int. 2005;68:437–55.PubMedCrossRefGoogle Scholar
  90. 90.
    Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3:23–35.PubMedCrossRefGoogle Scholar
  91. 91.
    Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122:787–95.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Ikezumi Y, Atkins RC, Nikolic-Paterson DJ. Interferon-gamma augments acute macrophage-mediated renal injury via a glucocorticoid-sensitive mechanism. J Am Soc Nephrol. 2003;14:888–98.PubMedCrossRefGoogle Scholar
  93. 93.
    Lee S, Huen S, Nishio H, Nishio S, Lee HK, Choi BS, et al. Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol. 2011;22:317–26.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Nishida M, Fujinaka H, Matsusaka T, Price J, Kon V, Fogo AB, et al. Absence of angiotensin II type 1 receptor in bone marrow-derived cells is detrimental in the evolution of renal fibrosis. J Clin Invest. 2002;110:1859–68.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Lopez-Guisa JM, Cai X, Collins SJ, Yamaguchi I, Okamura DM, Bugge TH, et al. Mannose receptor 2 attenuates renal fibrosis. J Am Soc Nephrol. 2012;23:236–51.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Menke J, Iwata Y, Rabacal WA, Basu R, Yeung YG, Humphreys BD, et al. CSF-1 signals directly to renal tubular epithelial cells to mediate repair in mice. J Clin Invest. 2009;119:2330–42.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Alikhan MA, Jones CV, Williams TM, Beckhouse AG, Fletcher AL, Kett MM, et al. Colony-stimulating factor-1 promotes kidney growth and repair via alteration of macrophage responses. Am J Pathol. 2011;179:1243–56.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Cao Q, Wang Y, Zheng D, Sun Y, Lee VW, Zheng G, et al. IL-10/TGF-beta-modified macrophages induce regulatory T cells and protect against adriamycin nephrosis. J Am Soc Nephrol. 2010;21:933–42.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Kluth DC, Ainslie CV, Pearce WP, Finlay S, Clarke D, Anegon I, et al. Macrophages transfected with adenovirus to express IL-4 reduce inflammation in experimental glomerulonephritis. J Immunol. 2001;166:4728–36.PubMedCrossRefGoogle Scholar
  100. 100.
    Lu J, Cao Q, Zheng D, Sun Y, Wang C, Yu X, et al. Discrete functions of M2a and M2c macrophage subsets determine their relative efficacy in treating chronic kidney disease. Kidney Int. 2013;84:745–55.PubMedCrossRefGoogle Scholar
  101. 101.
    Riquelme P, Tomiuk S, Kammler A, Fandrich F, Schlitt HJ, Geissler EK, et al. IFN-gamma-induced iNOS expression in mouse regulatory macrophages prolongs allograft survival in fully immunocompetent recipients. Mol Ther. 2013;21:409–22.PubMedCrossRefGoogle Scholar
  102. 102.
    Wilson HM, Chettibi S, Jobin C, Walbaum D, Rees AJ, Kluth DC. Inhibition of macrophage nuclear factor-kappaB leads to a dominant anti-inflammatory phenotype that attenuates glomerular inflammation in vivo. Am J Pathol. 2005;167:27–37.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Wilson HM, Stewart KN, Brown PA, Anegon I, Chettibi S, Rees AJ, et al. Bone-marrow-derived macrophages genetically modified to produce IL-10 reduce injury in experimental glomerulonephritis. Mol Ther. 2002;6:710–7.PubMedCrossRefGoogle Scholar
  104. 104.
    Yamagishi H, Yokoo T, Imasawa T, Mitarai T, Kawamura T, Utsunomiya Y. Genetically modified bone marrow-derived vehicle cells site specifically deliver an anti-inflammatory cytokine to inflamed interstitium of obstructive nephropathy. J Immunol. 2001;166:609–16.PubMedCrossRefGoogle Scholar
  105. 105.
    Yokoo T, Ohashi T, Utsunomiya Y, Kojima H, Imasawa T, Kogure T, et al. Prophylaxis of antibody-induced acute glomerulonephritis with genetically modified bone marrow-derived vehicle cells. Hum Gene Ther. 1999;10:2673–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Ferenbach DA, Ramdas V, Spencer N, Marson L, Anegon I, Hughes J, et al. Macrophages expressing heme oxygenase-1 improve renal function in ischemia/reperfusion injury. Mol Ther. 2010;18:1706–13.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Nigam eS, Lieberthal W. Acute renal failure. III. The role of growth factors in the process of renal regeneration and repair. Am J Physiol Renal Physiol. 2000;279:F3–F11.PubMedGoogle Scholar
  108. 108.
    Lieberthal W, Fuhro R, Andry CC, Rennke H, Abernathy VE, Koh JS, et al. Rapamycin impairs recovery from acute renal failure: role of cell-cycle arrest and apoptosis of tubular cells. Am J Physiol Renal Physiol. 2001;281:F693–706.PubMedGoogle Scholar
  109. 109.
    Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, Gonzalez-Baron M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 2004;30:193–204.PubMedCrossRefGoogle Scholar
  110. 110.
    Angers S, Moon RT. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol. 2009;10:468–77.PubMedCrossRefGoogle Scholar
  111. 111.
    Grimes CA, Jope RS. The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol. 2001;65:391–426.PubMedCrossRefGoogle Scholar
  112. 112.
    Lin SL, Li B, Rao S, Yeo EJ, Hudson TE, Nowlin BT, et al. Macrophage Wnt7b is critical for kidney repair and regeneration. Proc Natl Acad Sci U S A. 2010;107:4194–9.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Doble BW, Woodgett JR. GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci. 2003;116:1175–86.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Jope RS, Johnson GV. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci. 2004;29:95–102.PubMedCrossRefGoogle Scholar
  115. 115.
    Wang Z, Havasi A, Gall J, Bonegio R, Li Z, Mao H, et al. GSK3beta promotes apoptosis after renal ischemic injury. J Am Soc Nephrol. 2010;21:284–94.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Zhou D, Li Y, Lin L, Zhou L, Igarashi P, Liu Y. Tubule-specific ablation of endogenous beta-catenin aggravates acute kidney injury in mice. Kidney Int. 2012;82:537–47.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Bao H, Ge Y, Zhuang S, Dworkin LD, Liu Z, Gong R. Inhibition of glycogen synthase kinase-3beta prevents NSAID-induced acute kidney injury. Kidney Int. 2012;81:662–73.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Salahudeen AK, Haider N, Jenkins J, Joshi M, Patel H, Huang H, et al. Antiapoptotic properties of erythropoiesis-stimulating proteins in models of cisplatin-induced acute kidney injury. Am J Physiol Renal Physiol. 2008;294:F1354–65.PubMedCrossRefGoogle Scholar
  119. 119.
    Ucero AC, Berzal S, Ocana-Salceda C, Sancho M, Orzaez M, Messeguer A, et al. A polymeric nanomedicine diminishes inflammatory events in renal tubular cells. PLoS One. 2013;8:e51992.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Lewis TS, Shapiro PS, Ahn NG. Signal transduction through MAP kinase cascades. Adv Cancer Res. 1998;74:49–139.PubMedCrossRefGoogle Scholar
  121. 121.
    Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001;81:807–69.PubMedGoogle Scholar
  122. 122.
    di Mari JF, Davis R, Safirstein RL. MAPK activation determines renal epithelial cell survival during oxidative injury. Am J Physiol. 1999;277:F195–203.PubMedGoogle Scholar
  123. 123.
    Arany I, Megyesi JK, Nelkin BD, Safirstein RL. STAT3 attenuates EGFR-mediated ERK activation and cell survival during oxidant stress in mouse proximal tubular cells. Kidney Int. 2006;70:669–74.PubMedCrossRefGoogle Scholar
  124. 124.
    Ishizuka S, Yano T, Hagiwara K, Sone M, Nihei H, Ozasa H, et al. Extracellular signal-regulated kinase mediates renal regeneration in rats with myoglobinuric acute renal injury. Biochem Biophys Res Commun. 1999;254:88–92.PubMedCrossRefGoogle Scholar
  125. 125.
    Ikarashi K, Li B, Suwa M, Kawamura K, Morioka T, Yao J, et al. Bone marrow cells contribute to regeneration of damaged glomerular endothelial cells. Kidney Int. 2005;67:1925–33.PubMedCrossRefGoogle Scholar
  126. 126.
    Lin F, Moran A, Igarashi P. Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney. J Clin Invest. 2005;115:1756–64.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Prodromidi EI, Poulsom R, Jeffery R, Roufosse CA, Pollard PJ, Pusey CD, et al. Bone marrow-derived cells contribute to podocyte regeneration and amelioration of renal disease in a mouse model of Alport syndrome. Stem Cells. 2006;24:2448–55.PubMedCrossRefGoogle Scholar
  128. 128.
    Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol. 2009;20:1053–67.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98:1076–84.PubMedCrossRefGoogle Scholar
  130. 130.
    Tomasoni S, Longaretti L, Rota C, Morigi M, Conti S, Gotti E, et al. Transfer of growth factor receptor mRNA via exosomes unravels the regenerative effect of mesenchymal stem cells. Stem Cells Dev. 2013;22:772–80.PubMedCrossRefGoogle Scholar
  131. 131.
    Wang Y, He J, Pei X, Zhao W. Systematic review and meta-analysis of mesenchymal stem/stromal cells therapy for impaired renal function in small animal models. Nephrology (Carlton). 2013;18:201–8.CrossRefGoogle Scholar
  132. 132.
    Xinaris C, Morigi M, Benedetti V, Imberti B, Fabricio AS, Squarcina E, et al. A novel strategy to enhance mesenchymal stem cell migration capacity and promote tissue repair in an injury specific fashion. Cell Transplant. 2013;22:423–36.PubMedCrossRefGoogle Scholar
  133. 133.
    Duffy MM, Ritter T, Ceredig R, Griffin MD. Mesenchymal stem cell effects on T-cell effector pathways. Stem Cell Res Ther. 2011;2:34.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Camussi G, Deregibus MC, Tetta C. Paracrine/endocrine mechanism of stem cells on kidney repair: role of microvesicle-mediated transfer of genetic information. Curr Opin Nephrol Hypertens. 2010;19:7–12.PubMedCrossRefGoogle Scholar
  135. 135.
    Ke YH, He JW, Fu WZ, Zhang ZL. Identification of two novel mutations in the OCRL1 gene in two Chinese families with Lowe syndrome. Nephrology (Carlton). 2012;17:20–5.CrossRefGoogle Scholar
  136. 136.
    Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views. Stem Cells. 2007;25:2896–902.PubMedCrossRefGoogle Scholar
  137. 137.
    Burdon TJ, Paul A, Noiseux N, Prakash S, Shum-Tim D. Bone marrow stem cell derived paracrine factors for regenerative medicine: current perspectives and therapeutic potential. Bone Marrow Res. 2011;2011:207326.PubMedCrossRefGoogle Scholar
  138. 138.
    Li J, Deane JA, Campanale NV, Bertram JF, Ricardo SD. The contribution of bone marrow-derived cells to the development of renal interstitial fibrosis. Stem Cells. 2007;25:697–706.PubMedCrossRefGoogle Scholar
  139. 139.
    Thirabanjasak D, Tantiwongse K, Thorner PS. Angiomyeloproliferative lesions following autologous stem cell therapy. J Am Soc Nephrol. 2010;21:1218–22.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Donizetti-Oliveira C, Semedo P, Burgos-Silva M, Cenedeze MA, Malheiros DM, Reis MA, et al. Adipose tissue-derived stem cell treatment prevents renal disease progression. Cell Transplant. 2012;21:1727–41.PubMedCrossRefGoogle Scholar
  141. 141.
    Eirin A, Zhu XY, Krier JD, Tang H, Jordan KL, Grande JP, et al. Adipose tissue-derived mesenchymal stem cells improve revascularization outcomes to restore renal function in swine atherosclerotic renal artery stenosis. Stem Cells. 2012;30:1030–41.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Kim JH, Park DJ, Yun JC, Jung MH, Yeo HD, Kim HJ, et al. Human adipose tissue-derived mesenchymal stem cells protect kidneys from cisplatin nephrotoxicity in rats. Am J Physiol Renal Physiol. 2012;302:F1141–50.PubMedCrossRefGoogle Scholar
  143. 143.
    Zhu XY, Urbieta-Caceres V, Krier JD, Textor SC, Lerman A, Lerman LO. Mesenchymal stem cells and endothelial progenitor cells decrease renal injury in experimental swine renal artery stenosis through different mechanisms. Stem Cells. 2013;31:117–25.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    de Almeida DC, Donizetti-Oliveira C, Barbosa-Costa P, Origassa CS, Camara NO. In search of mechanisms associated with mesenchymal stem cell-based therapies for acute kidney injury. Clin Biochem Rev. 2013;34:131–44.PubMedPubMedCentralGoogle Scholar
  145. 145.
    Chen YT, Sun CK, Lin YC, Chang LT, Chen YL, Tsai TH, et al. Adipose-derived mesenchymal stem cell protects kidneys against ischemia-reperfusion injury through suppressing oxidative stress and inflammatory reaction. J Transl Med. 2011;9:51.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Rota C, Imberti B, Pozzobon M, Piccoli M, De Coppi P, Atala A, et al. Human amniotic fluid stem cell preconditioning improves their regenerative potential. Stem Cells Dev. 2012;21:1911–23.PubMedCrossRefGoogle Scholar
  147. 147.
    Song B, Niclis JC, Alikhan MA, Sakkal S, Sylvain A, Kerr PG, et al. Generation of induced pluripotent stem cells from human kidney mesangial cells. J Am Soc Nephrol. 2011;22:1213–20.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Song B, Smink AM, Jones CV, Callaghan JM, Firth SD, Bernard CA, et al. The directed differentiation of human iPS cells into kidney podocytes. PLoS One. 2012;7:e46453.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Zhou T, Benda C, Duzinger S, Huang Y, Li X, Li Y, et al. Generation of induced pluripotent stem cells from urine. J Am Soc Nephrol. 2011;22:1221–8.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY, et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol. 2010;28:848–55.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Lee PY, Chien Y, Chiou GY, Lin CH, Chiou CH, Tarng DC. Induced pluripotent stem cells without c-Myc attenuate acute kidney injury via downregulating the signaling of oxidative stress and inflammation in ischemia-reperfusion rats. Cell Transplant. 2012;21:2569–85.PubMedCrossRefGoogle Scholar
  152. 152.
    Imberti B, Tomasoni S, Ciampi O, Pezzotta A, Derosas M, Xinaris C, et al. Renal progenitors derived from human iPSCs engraft and restore function in a mouse model of acute kidney injury. Sci Rep. 2015;5:8826.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Zhao T, Zhang ZN, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem cells. Nature. 2011;474:212–5.PubMedCrossRefGoogle Scholar
  154. 154.
    Harari-Steinberg O, Metsuyanim S, Omer D, Gnatek Y, Gershon R, Pri-Chen S, et al. Identification of human nephron progenitors capable of generation of kidney structures and functional repair of chronic renal disease. EMBO Mol Med. 2013;5:1556–68.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Woolf AS, Palmer SJ, Snow ML, Fine LG. Creation of a functioning chimeric mammalian kidney. Kidney Int. 1990;38:991–7.PubMedCrossRefGoogle Scholar
  156. 156.
    Rogers SA, Lowell JA, Hammerman NA, Hammerman MR. Transplantation of developing metanephroi into adult rats. Kidney Int. 1998;54:27–37.PubMedCrossRefGoogle Scholar
  157. 157.
    Statter MB, Fahrner KJ, Barksdale EM Jr, Parks DE, Flavell RA, Donahoe PK. Correlation of fetal kidney and testis congenic graft survival with reduced major histocompatibility complex burden. Transplantation. 1989;47:651–60.PubMedCrossRefGoogle Scholar
  158. 158.
    Abrahamson DR, St John PL, Pillion DJ, Tucker DC. Glomerular development in intraocular and intrarenal grafts of fetal kidneys. Lab Invest. 1991;64:629–39.PubMedGoogle Scholar
  159. 159.
    Mikos AG, Herring SW, Ochareon P, Elisseeff J, Lu HH, Kandel R, et al. Engineering complex tissues. Tissue Eng. 2006;12:3307–39.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Basu J, Ludlow JW. Developmental engineering the kidney: leveraging principles of morphogenesis for renal regeneration. Birth Defects Res C Embryo Today. 2012;96:30–8.PubMedCrossRefGoogle Scholar
  161. 161.
    Cuppage FE, Tate A. Repair of the nephron following injury with mercuric chloride. Am J Pathol. 1967;51:405–29.PubMedPubMedCentralGoogle Scholar
  162. 162.
    Oliver J. Correlations of structure and function and mechanisms of recovery in acute tubular necrosis. Am J Med. 1953;15:535–57.PubMedCrossRefGoogle Scholar
  163. 163.
    Bissell MJ, Hall HG, Parry G. How does the extracellular matrix direct gene expression? J Theor Biol. 1982;99:31–68.PubMedCrossRefGoogle Scholar
  164. 164.
    Vorotnikova E, McIntosh D, Dewilde A, Zhang J, Reing JE, Zhang L, et al. Extracellular matrix-derived products modulate endothelial and progenitor cell migration and proliferation in vitro and stimulate regenerative healing in vivo. Matrix Biol. 2010;29:690–700.PubMedCrossRefGoogle Scholar
  165. 165.
    Bornstein P, Sage EH. Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol. 2002;14:608–16.PubMedCrossRefGoogle Scholar
  166. 166.
    Lelongt B, Ronco P. Role of extracellular matrix in kidney development and repair. Pediatr Nephrol. 2003;18:731–42.PubMedCrossRefGoogle Scholar
  167. 167.
    Lanza RP, Chung HY, Yoo JJ, Wettstein PJ, Blackwell C, Borson N, et al. Generation of histocompatible tissues using nuclear transplantation. Nat Biotechnol. 2002;20:689–96.PubMedCrossRefGoogle Scholar
  168. 168.
    Bergsma EJ, Rozema FR, Bos RR, de Bruijn WC. Foreign body reactions to resorbable poly(L-lactide) bone plates and screws used for the fixation of unstable zygomatic fractures. J Oral Maxillofac Surg. 1993;51:666–70.PubMedCrossRefGoogle Scholar
  169. 169.
    Lo H, Kadiyala S, Guggino SE, Leong KW. Poly(L-lactic acid) foams with cell seeding and controlled-release capacity. J Biomed Mater Res. 1996;30:475–84.PubMedCrossRefGoogle Scholar
  170. 170.
    Martin C, Winet H, Bao JY. Acidity near eroding polylactide-polyglycolide in vitro and in vivo in rabbit tibial bone chambers. Biomaterials. 1996;17:2373–80.PubMedCrossRefGoogle Scholar
  171. 171.
    Zhang R, Ma PX. Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res. 1999;44:446–55.PubMedCrossRefGoogle Scholar
  172. 172.
    Nam YS, Yoon JJ, Park TG. A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J Biomed Mater Res. 2000;53:1–7.PubMedCrossRefGoogle Scholar
  173. 173.
    Orlando G, Baptista P, Birchall M, De Coppi P, Farney A, Guimaraes-Souza NK, et al. Regenerative medicine as applied to solid organ transplantation: current status and future challenges. Transpl Int. 2011;24:223–32.PubMedCrossRefGoogle Scholar
  174. 174.
    Orlando G, Wood KJ, De Coppi P, Baptista PM, Binder KW, Bitar KN, et al. Regenerative medicine as applied to general surgery. Ann Surg. 2012;255:867–80.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Orlando G, Wood KJ, Stratta RJ, Yoo JJ, Atala A, Soker S. Regenerative medicine and organ transplantation: past, present, and future. Transplantation. 2011;91:1310–7.PubMedCrossRefGoogle Scholar
  176. 176.
    Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng. 2011;13:27–53.PubMedCrossRefGoogle Scholar
  177. 177.
    Crapo PM, Medberry CJ, Reing JE, Tottey S, van der Merwe Y, Jones KE, et al. Biologic scaffolds composed of central nervous system extracellular matrix. Biomaterials. 2012;33:3539–47.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Badylak SF, Gilbert TW. Immune response to biologic scaffold materials. Semin Immunol. 2008;20:109–16.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Brown BN, Valentin JE, Stewart-Akers AM, McCabe GP, Badylak SF. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials. 2009;30:1482–91.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Brown B, Lindberg K, Reing J, Stolz DB, Badylak SF. The basement membrane component of biologic scaffolds derived from extracellular matrix. Tissue Eng. 2006;12:519–26.PubMedCrossRefGoogle Scholar
  181. 181.
    Reing JE, Brown BN, Daly KA, Freund JM, Gilbert TW, Hsiong SX, et al. The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials. 2010;31:8626–33.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, et al. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat Med. 2008;14:213–21.PubMedCrossRefGoogle Scholar
  183. 183.
    Baptista PM, Siddiqui MM, Lozier G, Rodriguez SR, Atala A, Soker S. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology. 2011;53:604–17.PubMedCrossRefGoogle Scholar
  184. 184.
    Song JJ, Kim SS, Liu Z, Madsen JC, Mathisen DJ, Vacanti JP, et al. Enhanced in vivo function of bioartificial lungs in rats. J Biomed Mater Res A. 2011;92:998–1005. discussion-6Google Scholar
  185. 185.
    Loai Y, Yeger H, Coz C, Antoon R, Islam SS, Moore K, et al. Bladder tissue engineering: tissue regeneration and neovascularization of HA-VEGF-incorporated bladder acellular constructs in mouse and porcine animal models. J Biomed Mater Res A. 2010;94:1205–15.PubMedGoogle Scholar
  186. 186.
    Ross EA, Williams MJ, Hamazaki T, Terada N, Clapp WL, Adin C, et al. Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. J Am Soc Nephrol. 2009;20:2338–47.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Orlando G, Farney AC, Iskandar SS, Mirmalek-Sani SH, Sullivan DC, Moran E, et al. Production and implantation of renal extracellular matrix scaffolds from porcine kidneys as a platform for renal bioengineering investigations. Ann Surg. 2012;256:363–70.PubMedCrossRefGoogle Scholar
  188. 188.
    Nakayama KH, Batchelder CA, Lee CI, Tarantal AF. Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Eng Part A. 2010;16:2207–16.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Sullivan DC, Mirmalek-Sani SH, Deegan DB, Baptista PM, Aboushwareb T, Atala A, et al. Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials. 2012;33:7756–64.PubMedCrossRefGoogle Scholar
  190. 190.
    Oliver JA, Klinakis A, Cheema FH, Friedlander J, Sampogna RV, Martens TP, et al. Proliferation and migration of label-retaining cells of the kidney papilla. J Am Soc Nephrol. 2009;20:2315–27.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Reule S, Gupta S. Kidney regeneration and resident stem cells. Organogenesis. 2011;7:135–9.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Maeshima A, Sakurai H, Nigam SK. Adult kidney tubular cell population showing phenotypic plasticity, tubulogenic capacity, and integration capability into developing kidney. J Am Soc Nephrol. 2006;17:188–98.PubMedCrossRefGoogle Scholar
  193. 193.
    Humphreys BD, Bonventre JV. The contribution of adult stem cells to renal repair. Nephrol Ther. 2007;3:3–10.PubMedCrossRefGoogle Scholar
  194. 194.
    Vogetseder A, Karadeniz A, Kaissling B, Le Hir M. Tubular cell proliferation in the healthy rat kidney. Histochem Cell Biol. 2005;124:97–104.PubMedCrossRefGoogle Scholar
  195. 195.
    Challen GA, Little MH. A side order of stem cells: the SP phenotype. Stem Cells. 2006;24:3–12.PubMedCrossRefGoogle Scholar
  196. 196.
    Iwatani H, Ito T, Imai E, Matsuzaki Y, Suzuki A, Yamato M, et al. Hematopoietic and nonhematopoietic potentials of Hoechst(low)/side population cells isolated from adult rat kidney. Kidney Int. 2004;65:1604–14.PubMedCrossRefGoogle Scholar
  197. 197.
    Hishikawa K, Marumo T, Miura S, Nakanishi A, Matsuzaki Y, Shibata K, et al. Musculin/MyoR is expressed in kidney side population cells and can regulate their function. J Cell Biol. 2005;169:921–8.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Hristov M, Erl W, Weber PC. Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol. 2003;23:1185–9.PubMedCrossRefGoogle Scholar
  199. 199.
    Bidlingmaier S, Zhu X, Liu B. The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells. J Mol Med (Berl). 2008;86:1025–32.CrossRefGoogle Scholar
  200. 200.
    Dekel B, Zangi L, Shezen E, Reich-Zeliger S, Eventov-Friedman S, Katchman H, et al. Isolation and characterization of nontubular sca-1+lin- multipotent stem/progenitor cells from adult mouse kidney. J Am Soc Nephrol. 2006;17:3300–14.PubMedCrossRefGoogle Scholar
  201. 201.
    Bertoncello I, Williams B. Hematopoietic stem cell characterization by Hoechst 33342 and rhodamine 123 staining. Methods Mol Biol. 2004;263:181–200.PubMedGoogle Scholar
  202. 202.
    Gupta S, Verfaillie C, Chmielewski D, Kren S, Eidman K, Connaire J, et al. Isolation and characterization of kidney-derived stem cells. J Am Soc Nephrol. 2006;17:3028–40.PubMedCrossRefGoogle Scholar
  203. 203.
    Lasagni L, Romagnani P. Glomerular epithelial stem cells: the good, the bad, and the ugly. J Am Soc Nephrol. 2010;21:1612–9.PubMedCrossRefGoogle Scholar
  204. 204.
    Ronconi E, Sagrinati C, Angelotti ML, Lazzeri E, Mazzinghi B, Ballerini L, et al. Regeneration of glomerular podocytes by human renal progenitors. J Am Soc Nephrol. 2009;20:322–32.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Appel D, Kershaw DB, Smeets B, Yuan G, Fuss A, Frye B, et al. Recruitment of podocytes from glomerular parietal epithelial cells. J Am Soc Nephrol. 2009;20:333–43.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Eirin A, Lerman LO. Mesenchymal stem cell treatment for chronic renal failure. Stem Cell Res Ther. 2014;5:83.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Rosenberg ME. Cell-based therapies in kidney disease. Kidney Int Suppl. 2011;3:364–7.CrossRefGoogle Scholar
  208. 208.
    Herzlinger D, Koseki C, Mikawa T, al-Awqati Q. Metanephric mesenchyme contains multipotent stem cells whose fate is restricted after induction. Development. 1992;114:565–72.PubMedGoogle Scholar
  209. 209.
    Hartman HA, Lai HL, Patterson LT. Cessation of renal morphogenesis in mice. Dev Biol. 2007;310:379–87.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Strutz F, Zeisberg M, Renziehausen A, Raschke B, Becker V, van Kooten C, et al. TGF-beta 1 induces proliferation in human renal fibroblasts via induction of basic fibroblast growth factor (FGF-2). Kidney Int. 2001;59:579–92.PubMedCrossRefGoogle Scholar
  211. 211.
    Phillips AO, Steadman R. Diabetic nephropathy: the central role of renal proximal tubular cells in tubulointerstitial injury. Histol Histopathol. 2002;17:247–52.PubMedGoogle Scholar
  212. 212.
    Helbert MJ, Dauwe S, De Broe ME. Flow cytometric immunodissection of the human nephron in vivo and in vitro. Exp Nephrol. 1999;7:360–76.PubMedCrossRefGoogle Scholar
  213. 213.
    Cummings BS, Lasker JM, Lash LH. Expression of glutathione-dependent enzymes and cytochrome P450s in freshly isolated and primary cultures of proximal tubular cells from human kidney. J Pharmacol Exp Ther. 2000;293:677–85.PubMedGoogle Scholar
  214. 214.
    Qi W, Johnson DW, Vesey DA, Pollock CA, Chen X. Isolation, propagation and characterization of primary tubule cell culture from human kidney. Nephrology (Carlton). 2007;12:155–9.CrossRefGoogle Scholar
  215. 215.
    Presnell SC, Bruce AT, Wallace SM, Choudhury S, Genheimer CW, Cox B, et al. Isolation, characterization, and expansion methods for defined primary renal cell populations from rodent, canine, and human normal and diseased kidneys. Tissue Eng Part C Methods. 2011;17:261–73.PubMedCrossRefGoogle Scholar
  216. 216.
    Baer PC, Geiger H. Human renal cells from the thick ascending limb and early distal tubule: characterization of primary isolated and cultured cells by reverse transcription polymerase chain reaction. Nephrology (Carlton). 2008;13:316–21.CrossRefGoogle Scholar
  217. 217.
    Aggarwal S, Moggio A, Bussolati B. Concise review: stem/progenitor cells for renal tissue repair: current knowledge and perspectives. Stem Cells Transl Med. 2013;2:1011–9.PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Kitamura S, Sakurai H, Makino H. Single adult kidney stem/progenitor cells reconstitute three-dimensional nephron structures in vitro. Stem Cells. 2014;33:774–84.CrossRefGoogle Scholar
  219. 219.
    Bruno S, Bussolati B, Grange C, Collino F, di Cantogno LV, Herrera MB, et al. Isolation and characterization of resident mesenchymal stem cells in human glomeruli. Stem Cells Dev. 2009;18:867–80.PubMedCrossRefGoogle Scholar
  220. 220.
    Wang H, Gomez JA, Klein S, Zhang Z, Seidler B, Yang Y, et al. Adult renal mesenchymal stem cell-like cells contribute to juxtaglomerular cell recruitment. J Am Soc Nephrol. 2013;24:1263–73.PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Simerman AA, Dumesic DA, Chazenbalk GD. Pluripotent muse cells derived from human adipose tissue: a new perspective on regenerative medicine and cell therapy. Clin Transl Med. 2014;3:12.PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418:41–9.PubMedCrossRefGoogle Scholar
  223. 223.
    Hayakawa M, Ishizaki M, Hayakawa J, Migita M, Murakami M, Shimada T, et al. Role of bone marrow cells in the healing process of mouse experimental glomerulonephritis. Pediatr Res. 2005;58:323–8.PubMedCrossRefGoogle Scholar
  224. 224.
    Kale S, Karihaloo A, Clark PR, Kashgarian M, Krause DS, Cantley LG. Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Invest. 2003;112:42–9.PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Rookmaaker MB, Smits AM, Tolboom H, Van’t Wout K, Martens AC, Goldschmeding R, et al. Bone-marrow-derived cells contribute to glomerular endothelial repair in experimental glomerulonephritis. Am J Pathol. 2003;163:553–62.PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Sugimoto H, Mundel TM, Sund M, Xie L, Cosgrove D, Kalluri R. Bone-marrow-derived stem cells repair basement membrane collagen defects and reverse genetic kidney disease. Proc Natl Acad Sci U S A. 2006;103:7321–6.PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Herrera MB, Bussolati B, Bruno S, Fonsato V, Romanazzi GM, Camussi G. Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. Int J Mol Med. 2004;14:1035–41.PubMedGoogle Scholar
  228. 228.
    Morigi M, Imberti B, Zoja C, Corna D, Tomasoni S, Abbate M, et al. Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol. 2004;15:1794–804.PubMedCrossRefGoogle Scholar
  229. 229.
    Wong CY, Cheong SK, Mok PL, Leong CF. Differentiation of human mesenchymal stem cells into mesangial cells in post-glomerular injury murine model. Pathology. 2008;40:52–7.PubMedCrossRefGoogle Scholar
  230. 230.
    Togel F, Weiss K, Yang Y, Hu Z, Zhang P, Westenfelder C. Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol Renal Physiol. 2007;292:F1626–35.PubMedCrossRefGoogle Scholar
  231. 231.
    Chou YH, Pan SY, Yang CH, Lin SL. Stem cells and kidney regeneration. J Formos Med Assoc. 2014;113:201–9.PubMedCrossRefGoogle Scholar
  232. 232.
    Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature. 2002;416:542–5.PubMedCrossRefGoogle Scholar
  233. 233.
    Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K, et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature. 2003;425:968–73.PubMedCrossRefGoogle Scholar
  234. 234.
    Togel FE, Westenfelder C. Mesenchymal stem cells: a new therapeutic tool for AKI. Nat Rev Nephrol. 2010;6:179–83.PubMedCrossRefGoogle Scholar
  235. 235.
    Perico N, Casiraghi F, Introna M, Gotti E, Todeschini M, Cavinato RA, et al. Autologous mesenchymal stromal cells and kidney transplantation: a pilot study of safety and clinical feasibility. Clin J Am Soc Nephrol. 2011;6:412–22.PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Tan J, Wu W, Xu X, Liao L, Zheng F, Messinger S, et al. Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial. JAMA. 2012;307:1169–77.PubMedCrossRefGoogle Scholar
  237. 237.
    Casiraghi F, Perico N, Remuzzi G. Mesenchymal stromal cells to promote solid organ transplantation tolerance. Curr Opin Organ Transplant. 2013;18:51–8.PubMedCrossRefGoogle Scholar
  238. 238.
    Reinders ME, de Fijter JW, Roelofs H, Bajema IM, de Vries DK, Schaapherder AF, et al. Autologous bone marrow-derived mesenchymal stromal cells for the treatment of allograft rejection after renal transplantation: results of a phase I study. Stem Cells Transl Med. 2013;2:107–11.PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell. 2009;5:54–63.PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Ebrahimi B, Eirin A, Li Z, Zhu XY, Zhang X, Lerman A, et al. Mesenchymal stem cells improve medullary inflammation and fibrosis after revascularization of swine atherosclerotic renal artery stenosis. PLoS One. 2013;8:e67474.PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Katsuno T, Ozaki T, Saka Y, Furuhashi K, Kim H, Yasuda K, et al. Low serum cultured adipose tissue-derived stromal cells ameliorate acute kidney injury in rats. Cell Transplant. 2013;22:287–97.PubMedCrossRefGoogle Scholar
  242. 242.
    Furuhashi K, Tsuboi N, Shimizu A, Katsuno T, Kim H, Saka Y, et al. Serum-starved adipose-derived stromal cells ameliorate crescentic GN by promoting immunoregulatory macrophages. J Am Soc Nephrol. 2013;24:587–603.PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Morigi M, Rota C, Montemurro T, Montelatici E, Lo Cicero V, Imberti B, et al. Life-sparing effect of human cord blood-mesenchymal stem cells in experimental acute kidney injury. Stem Cells. 2010;28:513–22.PubMedGoogle Scholar
  244. 244.
    Shalaby RH, Rashed LA, Ismaail AE, Madkour NK, Elwakeel SH. Hematopoietic stem cells derived from human umbilical cord ameliorate cisplatin-induced acute renal failure in rats. Am J Stem Cells. 2014;3:83–96.PubMedPubMedCentralGoogle Scholar
  245. 245.
    Panepucci RA, Siufi JL, Silva WA Jr, Proto-Siquiera R, Neder L, Orellana M, et al. Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Stem Cells. 2004;22:1263–78.PubMedCrossRefGoogle Scholar
  246. 246.
    De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25:100–6.PubMedCrossRefGoogle Scholar
  247. 247.
    Perin L, Giuliani S, Jin D, Sedrakyan S, Carraro G, Habibian R, et al. Renal differentiation of amniotic fluid stem cells. Cell Prolif. 2007;40:936–48.PubMedCrossRefGoogle Scholar
  248. 248.
    Hauser PV, De Fazio R, Bruno S, Sdei S, Grange C, Bussolati B, et al. Stem cells derived from human amniotic fluid contribute to acute kidney injury recovery. Am J Pathol. 2010;177:2011–21.PubMedPubMedCentralCrossRefGoogle Scholar
  249. 249.
    Perin L, Sedrakyan S, Giuliani S, Da Sacco S, Carraro G, Shiri L, et al. Protective effect of human amniotic fluid stem cells in an immunodeficient mouse model of acute tubular necrosis. PLoS One. 2010;5:e9357.PubMedPubMedCentralCrossRefGoogle Scholar
  250. 250.
    Sedrakyan S, Da Sacco S, Milanesi A, Shiri L, Petrosyan A, Varimezova R, et al. Injection of amniotic fluid stem cells delays progression of renal fibrosis. J Am Soc Nephrol. 2012;23:661–73.PubMedPubMedCentralCrossRefGoogle Scholar
  251. 251.
    Sun D, Bu L, Liu C, Yin Z, Zhou X, Li X, et al. Therapeutic effects of human amniotic fluid-derived stem cells on renal interstitial fibrosis in a murine model of unilateral ureteral obstruction. PLoS One. 2013;8:e65042.PubMedPubMedCentralCrossRefGoogle Scholar
  252. 252.
    Da Sacco S, Lemley KV, Sedrakyan S, Zanusso I, Petrosyan A, Peti-Peterdi J, et al. A novel source of cultured podocytes. PLoS One. 2013;8:e81812.PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    Siegel N, Rosner M, Unbekandt M, Fuchs C, Slabina N, Dolznig H, et al. Contribution of human amniotic fluid stem cells to renal tissue formation depends on mTOR. Hum Mol Genet. 2010;19:3320–31.PubMedCrossRefGoogle Scholar
  254. 254.
    Patschan D, Krupincza K, Patschan S, Zhang Z, Hamby C, Goligorsky MS. Dynamics of mobilization and homing of endothelial progenitor cells after acute renal ischemia: modulation by ischemic preconditioning. Am J Physiol Renal Physiol. 2006;291:F176–85.PubMedCrossRefGoogle Scholar
  255. 255.
    Patschan D, Patschan S, Gobe GG, Chintala S, Goligorsky MS. Uric acid heralds ischemic tissue injury to mobilize endothelial progenitor cells. J Am Soc Nephrol. 2007;18:1516–24.PubMedCrossRefGoogle Scholar
  256. 256.
    Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.PubMedCrossRefGoogle Scholar
  257. 257.
    Chade AR, Zhu X, Lavi R, Krier JD, Pislaru S, Simari RD, et al. Endothelial progenitor cells restore renal function in chronic experimental renovascular disease. Circulation. 2009;119:547–57.PubMedPubMedCentralCrossRefGoogle Scholar
  258. 258.
    Chade AR, Zhu XY, Krier JD, Jordan KL, Textor SC, Grande JP, et al. Endothelial progenitor cells homing and renal repair in experimental renovascular disease. Stem Cells. 2010;28:1039–47.PubMedPubMedCentralCrossRefGoogle Scholar
  259. 259.
    Jie KE, Zaikova MA, Bergevoet MW, Westerweel PE, Rastmanesh M, Blankestijn PJ, et al. Progenitor cells and vascular function are impaired in patients with chronic kidney disease. Nephrol Dial Transplant. 2010;25:1875–82.PubMedCrossRefGoogle Scholar
  260. 260.
    Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–6.PubMedCrossRefGoogle Scholar
  261. 261.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.PubMedCrossRefGoogle Scholar
  262. 262.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.PubMedCrossRefGoogle Scholar
  263. 263.
    Basma H, Soto-Gutierrez A, Yannam GR, Liu L, Ito R, Yamamoto T, et al. Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Gastroenterology. 2009;136:990–9.PubMedCrossRefGoogle Scholar
  264. 264.
    Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27:275–80.PubMedPubMedCentralCrossRefGoogle Scholar
  265. 265.
    D'Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24:1392–401.PubMedCrossRefGoogle Scholar
  266. 266.
    Dhara SK, Stice SL. Neural differentiation of human embryonic stem cells. J Cell Biochem. 2008;105:633–40.PubMedPubMedCentralCrossRefGoogle Scholar
  267. 267.
    Hay DC, Zhao D, Fletcher J, Hewitt ZA, McLean D, Urruticoechea-Uriguen A, et al. Efficient differentiation of hepatocytes from human embryonic stem cells exhibiting markers recapitulating liver development in vivo. Stem Cells. 2008;26:894–902.PubMedCrossRefGoogle Scholar
  268. 268.
    Ledran MH, Krassowska A, Armstrong L, Dimmick I, Renstrom J, Lang R, et al. Efficient hematopoietic differentiation of human embryonic stem cells on stromal cells derived from hematopoietic niches. Cell Stem Cell. 2008;3:85–98.PubMedCrossRefGoogle Scholar
  269. 269.
    Takahashi T, Lord B, Schulze PC, Fryer RM, Sarang SS, Gullans SR, et al. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation. 2003;107:1912–6.PubMedCrossRefGoogle Scholar
  270. 270.
    Zhang D, Jiang W, Liu M, Sui X, Yin X, Chen S, et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res. 2009;19:429–38.PubMedCrossRefGoogle Scholar
  271. 271.
    Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE, Tolle K, et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature. 2011;470:105–9.PubMedCrossRefGoogle Scholar
  272. 272.
    Gadue P, Huber TL, Paddison PJ, Keller GM. Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc Natl Acad Sci U S A. 2006;103:16806–11.PubMedPubMedCentralCrossRefGoogle Scholar
  273. 273.
    Lam AQ, Freedman BS, Morizane R, Lerou PH, Valerius MT, Bonventre JV. Rapid and efficient differentiation of human pluripotent stem cells into intermediate mesoderm that forms tubules expressing kidney proximal tubular markers. J Am Soc Nephrol. 2014;25:1211–25.PubMedCrossRefGoogle Scholar
  274. 274.
    Mae S, Shono A, Shiota F, Yasuno T, Kajiwara M, Gotoda-Nishimura N, et al. Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells. Nat Commun. 2013;4:1367.PubMedPubMedCentralCrossRefGoogle Scholar
  275. 275.
    Takasato M, Er PX, Becroft M, Vanslambrouck JM, Stanley EG, Elefanty AG, et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol. 2014;16:118–26.PubMedCrossRefGoogle Scholar
  276. 276.
    Xia Y, Nivet E, Sancho-Martinez I, Gallegos T, Suzuki K, Okamura D, et al. Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells. Nat Cell Biol. 2013;15:1507–15.PubMedCrossRefGoogle Scholar
  277. 277.
    Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H, et al. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell. 2014;14:53–67.PubMedCrossRefGoogle Scholar
  278. 278.
    Cai J, Zhao Y, Liu Y, Ye F, Song Z, Qin H, et al. Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology. 2007;45:1229–39.PubMedCrossRefGoogle Scholar
  279. 279.
    Wichterle H, Lieberam I, Porter JA, Jessell TM. Directed differentiation of embryonic stem cells into motor neurons. Cell. 2002;110:385–97.PubMedCrossRefGoogle Scholar
  280. 280.
    Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol. 2007;25:1015–24.PubMedCrossRefGoogle Scholar
  281. 281.
    Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78:7634–8.PubMedPubMedCentralCrossRefGoogle Scholar
  282. 282.
    Osafune K. In vitro regeneration of kidney from pluripotent stem cells. Exp Cell Res. 2010;316:2571–7.PubMedCrossRefGoogle Scholar
  283. 283.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.PubMedCrossRefGoogle Scholar
  284. 284.
    Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol. 2000;18:399–404.PubMedCrossRefGoogle Scholar
  285. 285.
    Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A. 2000;97:11307–12.PubMedPubMedCentralCrossRefGoogle Scholar
  286. 286.
    Kobayashi T, Tanaka H, Kuwana H, Inoshita S, Teraoka H, Sasaki S, et al. Wnt4-transformed mouse embryonic stem cells differentiate into renal tubular cells. Biochem Biophys Res Commun. 2005;336:585–95.PubMedCrossRefGoogle Scholar
  287. 287.
    Mae S, Shirasawa S, Yoshie S, Sato F, Kanoh Y, Ichikawa H, et al. Combination of small molecules enhances differentiation of mouse embryonic stem cells into intermediate mesoderm through BMP7-positive cells. Biochem Biophys Res Commun. 2010;393:877–82.PubMedCrossRefGoogle Scholar
  288. 288.
    Steenhard BM, Isom KS, Cazcarro P, Dunmore JH, Godwin AR, St John PL, et al. Integration of embryonic stem cells in metanephric kidney organ culture. J Am Soc Nephrol. 2005;16:1623–31.PubMedCrossRefGoogle Scholar
  289. 289.
    Kim D, Dressler GR. Nephrogenic factors promote differentiation of mouse embryonic stem cells into renal epithelia. J Am Soc Nephrol. 2005;16:3527–34.PubMedCrossRefGoogle Scholar
  290. 290.
    Yamamoto M, Cui L, Johkura K, Asanuma K, Okouchi Y, Ogiwara N, et al. Branching ducts similar to mesonephric ducts or ureteric buds in teratomas originating from mouse embryonic stem cells. Am J Physiol Renal Physiol. 2006;290:F52–60.PubMedCrossRefGoogle Scholar
  291. 291.
    Esteban MA, Xu J, Yang J, Peng M, Qin D, Li W, et al. Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J Biol Chem. 2009;284:17634–40.PubMedPubMedCentralCrossRefGoogle Scholar
  292. 292.
    Ezashi T, Telugu BP, Alexenko AP, Sachdev S, Sinha S, Roberts RM. Derivation of induced pluripotent stem cells from pig somatic cells. Proc Natl Acad Sci U S A. 2009;106:10993–8.PubMedPubMedCentralCrossRefGoogle Scholar
  293. 293.
    Honda A, Hirose M, Hatori M, Matoba S, Miyoshi H, Inoue K, et al. Generation of induced pluripotent stem cells in rabbits: potential experimental models for human regenerative medicine. J Biol Chem. 2010;285:31362–9.PubMedPubMedCentralCrossRefGoogle Scholar
  294. 294.
    Li W, Wei W, Zhu S, Zhu J, Shi Y, Lin T, et al. Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell. 2009;4:16–9.PubMedCrossRefGoogle Scholar
  295. 295.
    Liao J, Cui C, Chen S, Ren J, Chen J, Gao Y, et al. Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell. 2009;4:11–5.PubMedCrossRefGoogle Scholar
  296. 296.
    Liu H, Zhu F, Yong J, Zhang P, Hou P, Li H, et al. Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell. 2008;3:587–90.PubMedCrossRefGoogle Scholar
  297. 297.
    Montserrat N, Ramirez-Bajo MJ, Xia Y, Sancho-Martinez I, Moya-Rull D, Miquel-Serra L, et al. Generation of induced pluripotent stem cells from human renal proximal tubular cells with only two transcription factors, OCT4 and SOX2. J Biol Chem. 2012;287:24131–8.PubMedPubMedCentralCrossRefGoogle Scholar
  298. 298.
    Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, et al. Epigenetic memory in induced pluripotent stem cells. Nature. 2010;467:285–90.PubMedPubMedCentralCrossRefGoogle Scholar
  299. 299.
    Zhou T, Benda C, Dunzinger S, Huang Y, Ho JC, Yang J, et al. Generation of human induced pluripotent stem cells from urine samples. Nat Protoc. 2012;7:2080–9.PubMedCrossRefGoogle Scholar
  300. 300.
    Okita K, Nagata N, Yamanaka S. Immunogenicity of induced pluripotent stem cells. Circ Res. 2011;109:720–1.PubMedCrossRefGoogle Scholar
  301. 301.
    Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 2011;472:51–6.PubMedCrossRefGoogle Scholar
  302. 302.
    Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S, Matsumura M, et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell. 2008;3:519–32.PubMedCrossRefGoogle Scholar
  303. 303.
    Suga H, Kadoshima T, Minaguchi M, Ohgushi M, Soen M, Nakano T, et al. Self-formation of functional adenohypophysis in three-dimensional culture. Nature. 2011;480:57–62.PubMedCrossRefGoogle Scholar
  304. 304.
    Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. 2012;10:771–85.PubMedCrossRefGoogle Scholar
  305. 305.
    Osafune K, Takasato M, Kispert A, Asashima M, Nishinakamura R. Identification of multipotent progenitors in the embryonic mouse kidney by a novel colony-forming assay. Development. 2006;133:151–61.PubMedCrossRefGoogle Scholar
  306. 306.
    Unbekandt M, Davies JA. Dissociation of embryonic kidneys followed by reaggregation allows the formation of renal tissues. Kidney Int. 2010;77:407–16.PubMedCrossRefGoogle Scholar
  307. 307.
    Chen J, Lansford R, Stewart V, Young F, Alt FW. RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development. Proc Natl Acad Sci U S A. 1993;90:4528–32.PubMedPubMedCentralCrossRefGoogle Scholar
  308. 308.
    Espejel S, Roll GR, McLaughlin KJ, Lee AY, Zhang JY, Laird DJ, et al. Induced pluripotent stem cell-derived hepatocytes have the functional and proliferative capabilities needed for liver regeneration in mice. J Clin Invest. 2010;120:3120–6.PubMedPubMedCentralCrossRefGoogle Scholar
  309. 309.
    Fraidenraich D, Stillwell E, Romero E, Wilkes D, Manova K, Basson CT, et al. Rescue of cardiac defects in id knockout embryos by injection of embryonic stem cells. Science. 2004;306:247–52.PubMedPubMedCentralCrossRefGoogle Scholar
  310. 310.
    Kobayashi T, Yamaguchi T, Hamanaka S, Kato-Itoh M, Yamazaki Y, Ibata M, et al. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell. 2010;142:787–99.PubMedCrossRefGoogle Scholar
  311. 311.
    Matsunari H, Nagashima H, Watanabe M, Umeyama K, Nakano K, Nagaya M, et al. Blastocyst complementation generates exogenic pancreas in vivo in apancreatic cloned pigs. Proc Natl Acad Sci U S A. 2013;110:4557–62.PubMedPubMedCentralCrossRefGoogle Scholar
  312. 312.
    Muller SM, Terszowski G, Blum C, Haller C, Anquez V, Kuschert S, et al. Gene targeting of VEGF-A in thymus epithelium disrupts thymus blood vessel architecture. Proc Natl Acad Sci U S A. 2005;102:10587–92.PubMedPubMedCentralCrossRefGoogle Scholar
  313. 313.
    Ueno H, Turnbull BB, Weissman IL. Two-step oligoclonal development of male germ cells. Proc Natl Acad Sci U S A. 2009;106:175–80.PubMedCrossRefGoogle Scholar
  314. 314.
    Ueno H, Weissman IL. Clonal analysis of mouse development reveals a polyclonal origin for yolk sac blood islands. Dev Cell. 2006;11:519–33.PubMedCrossRefGoogle Scholar
  315. 315.
    Usui J, Kobayashi T, Yamaguchi T, Knisely AS, Nishinakamura R, Nakauchi H. Generation of kidney from pluripotent stem cells via blastocyst complementation. Am J Pathol. 2012;180:2417–26.PubMedCrossRefGoogle Scholar
  316. 316.
    Dekel B, Burakova T, Arditti FD, Reich-Zeliger S, Milstein O, Aviel-Ronen S, et al. Human and porcine early kidney precursors as a new source for transplantation. Nat Med. 2003;9:53–60.PubMedCrossRefGoogle Scholar
  317. 317.
    Hammerman MR. Renal organogenesis from transplanted metanephric primordia. J Am Soc Nephrol. 2004;15:1126–32.PubMedCrossRefGoogle Scholar
  318. 318.
    Matsumoto K, Yokoo T, Matsunari H, Iwai S, Yokote S, Teratani T, et al. Xenotransplanted embryonic kidney provides a niche for endogenous mesenchymal stem cell differentiation into erythropoietin-producing tissue. Stem Cells. 2012;30:1228–35.PubMedCrossRefGoogle Scholar
  319. 319.
    Matsumoto K, Yokoo T, Yokote S, Utsunomiya Y, Ohashi T, Hosoya T. Functional development of a transplanted embryonic kidney: effect of transplantation site. J Nephrol. 2012;25:50–5.PubMedCrossRefGoogle Scholar
  320. 320.
    Rogers SA, Talcott M, Hammerman MR. Transplantation of pig metanephroi. ASAIO J. 2003;49:48–52.PubMedCrossRefGoogle Scholar
  321. 321.
    Sariola H, Ekblom P, Lehtonen E, Saxen L. Differentiation and vascularization of the metanephric kidney grafted on the chorioallantoic membrane. Dev Biol. 1983;96:427–35.PubMedCrossRefGoogle Scholar
  322. 322.
    Xinaris C, Benedetti V, Rizzo P, Abbate M, Corna D, Azzollini N, et al. In vivo maturation of functional renal organoids formed from embryonic cell suspensions. J Am Soc Nephrol. 2012;23:1857–68.PubMedPubMedCentralCrossRefGoogle Scholar
  323. 323.
    Yokote S, Yokoo T, Matsumoto K, Ohkido I, Utsunomiya Y, Kawamura T, et al. Metanephros transplantation inhibits the progression of vascular calcification in rats with adenine-induced renal failure. Nephron Exp Nephrol. 2012;120:e32–40.PubMedCrossRefGoogle Scholar
  324. 324.
    Yokote S, Yokoo T, Matsumoto K, Utsunomiya Y, Kawamura T, Hosoya T. The effect of metanephros transplantation on blood pressure in anephric rats with induced acute hypotension. Nephrol Dial Transplant. 2012;27:3449–55.PubMedCrossRefGoogle Scholar
  325. 325.
    Dekel B, Marcus H, Herzel BH, Bocher WO, Passwell JH, Reisner Y. In vivo modulation of the allogeneic immune response by human fetal kidneys: the role of cytokines, chemokines, and cytolytic effector molecules. Transplantation. 2000;69:1470–8.PubMedCrossRefGoogle Scholar
  326. 326.
    Steer DL, Nigam SK. Developmental approaches to kidney tissue engineering. Am J Physiol Renal Physiol. 2004;286:F1–7.PubMedCrossRefGoogle Scholar
  327. 327.
    Sakurai H, Barros EJ, Tsukamoto T, Barasch J, Nigam SK. An in vitro tubulogenesis system using cell lines derived from the embryonic kidney shows dependence on multiple soluble growth factors. Proc Natl Acad Sci U S A. 1997;94:6279–84.PubMedPubMedCentralCrossRefGoogle Scholar
  328. 328.
    Machiguchi T, Nakamura T. Cellular interactions via conditioned media induce in vivo nephron generation from tubular epithelial cells or mesenchymal stem cells. Biochem Biophys Res Commun. 2013;435:327–33.PubMedCrossRefGoogle Scholar
  329. 329.
    Auerbach R, Grobstein C. Inductive interaction of embryonic tissues after dissociation and reaggregation. Exp Cell Res. 1958;15:384–97.PubMedCrossRefGoogle Scholar
  330. 330.
    Ganeva V, Unbekandt M, Davies JA. An improved kidney dissociation and reaggregation culture system results in nephrons arranged organotypically around a single collecting duct system. Organogenesis. 2011;7:83–7.PubMedPubMedCentralCrossRefGoogle Scholar
  331. 331.
    D’Agati VD. Growing new kidneys from embryonic cell suspensions: fantasy or reality? J Am Soc Nephrol. 2012;23:1763–6.PubMedCrossRefGoogle Scholar
  332. 332.
    Ogle B, Cascalho M, Platt JL. Fusion of approaches to the treatment of organ failure. Am J Transplant. 2004;4(Suppl 6):74–7.PubMedCrossRefGoogle Scholar
  333. 333.
    Cascalho M, Ogle BM, Platt JL. Xenotransplantation and the future of renal replacement. J Am Soc Nephrol. 2004;15:1106–12.PubMedCrossRefGoogle Scholar
  334. 334.
    Yokoo T, Fukui A, Ohashi T, Miyazaki Y, Utsunomiya Y, Kawamura T, et al. Xenobiotic kidney organogenesis from human mesenchymal stem cells using a growing rodent embryo. J Am Soc Nephrol. 2006;17:1026–34.PubMedCrossRefGoogle Scholar
  335. 335.
    Yokoo T, Ohashi T, Shen JS, Sakurai K, Miyazaki Y, Utsunomiya Y, et al. Human mesenchymal stem cells in rodent whole-embryo culture are reprogrammed to contribute to kidney tissues. Proc Natl Acad Sci U S A. 2005;102:3296–300.PubMedPubMedCentralCrossRefGoogle Scholar
  336. 336.
    Yokoo T, Fukui A, Matsumoto K, Ohashi T, Sado Y, Suzuki H, et al. Generation of a transplantable erythropoietin-producer derived from human mesenchymal stem cells. Transplantation. 2008;85:1654–8.PubMedCrossRefGoogle Scholar
  337. 337.
    Davies JA, Fisher CE. Genes and proteins in renal development. Exp Nephrol. 2002;10:102–13.PubMedCrossRefGoogle Scholar
  338. 338.
    Lipschutz JH. Molecular development of the kidney: a review of the results of gene disruption studies. Am J Kidney Dis. 1998;31:383–97.PubMedCrossRefGoogle Scholar
  339. 339.
    Gheisari Y, Yokoo T, Matsumoto K, Fukui A, Sugimoto N, Ohashi T, et al. A thermoreversible polymer mediates controlled release of glial cell line-derived neurotrophic factor to enhance kidney regeneration. Artif Organs. 2010;34:642–7.PubMedGoogle Scholar
  340. 340.
    Fukui A, Yokoo T, Matsumoto K, Kawamura T, Hosoya T, Okabe M. Integration of human mesenchymal stem cells into the Wolffian duct in chicken embryos. Biochem Biophys Res Commun. 2009;385:330–5.PubMedCrossRefGoogle Scholar
  341. 341.
    Pino CJ, Humes HD. Stem cell technology for the treatment of acute and chronic renal failure. Transl Res. 2010;156:161–8.PubMedPubMedCentralCrossRefGoogle Scholar
  342. 342.
    Fissell WH, Fleischman AJ, Humes HD, Roy S. Development of continuous implantable renal replacement: past and future. Transl Res. 2007;150:327–36.PubMedCrossRefGoogle Scholar
  343. 343.
    Tasnim F, Deng R, Hu M, Liour S, Li Y, Ni M, et al. Achievements and challenges in bioartificial kidney development. Fibrogenesis Tissue Repair. 2010;3:14.PubMedPubMedCentralCrossRefGoogle Scholar
  344. 344.
    Aebischer P, Ip TK, Panol G, Galletti PM. The bioartificial kidney: progress towards an ultrafiltration device with renal epithelial cells processing. Life Support Syst. 1987;5:159–68.PubMedGoogle Scholar
  345. 345.
    Humes HD, Weitzel WF, Bartlett RH, Swaniker FC, Paganini EP, Luderer JR, et al. Initial clinical results of the bioartificial kidney containing human cells in ICU patients with acute renal failure. Kidney Int. 2004;66:1578–88.PubMedCrossRefGoogle Scholar
  346. 346.
    MacKay SM, Funke AJ, Buffington DA, Humes HD. Tissue engineering of a bioartificial renal tubule. ASAIO J. 1998;44:179–83.PubMedCrossRefGoogle Scholar
  347. 347.
    Nikolovski J, Gulari E, Humes HD. Design engineering of a bioartificial renal tubule cell therapy device. Cell Transplant. 1999;8:351–64.PubMedCrossRefGoogle Scholar
  348. 348.
    Humes HD, Cieslinski DA. Interaction between growth factors and retinoic acid in the induction of kidney tubulogenesis in tissue culture. Exp Cell Res. 1992;201:8–15.PubMedCrossRefGoogle Scholar
  349. 349.
    Humes HD, Krauss JC, Cieslinski DA, Funke AJ. Tubulogenesis from isolated single cells of adult mammalian kidney: clonal analysis with a recombinant retrovirus. Am J Physiol. 1996;271:F42–9.PubMedGoogle Scholar
  350. 350.
    O’Neil JJ, Stegemann JP, Nicholson DT, Mullon CJ, Maki T, Monaco AP, et al. Immunoprotection provided by the bioartificial pancreas in a xenogeneic host. Transplant Proc. 1997;29:2116–7.PubMedCrossRefGoogle Scholar
  351. 351.
    Humes HD, Buffington DA, MacKay SM, Funke AJ, Weitzel WF. Replacement of renal function in uremic animals with a tissue-engineered kidney. Nat Biotechnol. 1999;17:451–5.PubMedCrossRefGoogle Scholar
  352. 352.
    Fissell WH, Dyke DB, Weitzel WF, Buffington DA, Westover AJ, MacKay SM, et al. Bioartificial kidney alters cytokine response and hemodynamics in endotoxin-challenged uremic animals. Blood Purif. 2002;20:55–60.PubMedCrossRefGoogle Scholar
  353. 353.
    Humes HD, Buffington DA, Lou L, Abrishami S, Wang M, Xia J, et al. Cell therapy with a tissue-engineered kidney reduces the multiple-organ consequences of septic shock. Crit Care Med. 2003;31:2421–8.PubMedCrossRefGoogle Scholar
  354. 354.
    Humes HD, Sobota JT, Ding F, Song JH. A selective cytopheretic inhibitory device to treat the immunological dysregulation of acute and chronic renal failure. Blood Purif. 2010;29:183–90.PubMedCrossRefGoogle Scholar
  355. 355.
    Tumlin JA, Chawla L, Tolwani AJ, Mehta R, Dillon J, Finkel KW, et al. The effect of the selective cytopheretic device on acute kidney injury outcomes in the intensive care unit: a multicenter pilot study. Semin Dial. 2012;26:616–23.PubMedCrossRefGoogle Scholar
  356. 356.
    Pino CJ, Yevzlin AS, Lee K, Westover AJ, Smith PL, Buffington DA, et al. Cell-based approaches for the treatment of systemic inflammation. Nephrol Dial Transplant. 2013;28:296–302.PubMedCrossRefGoogle Scholar
  357. 357.
    Buffington DA, Pino CJ, Chen L, Westover AJ, Hageman G, Humes HD. Bioartificial renal epithelial cell system (BRECS): a compact, cryopreservable extracorporeal renal replacement device. Cell Med. 2012;4:33–43.PubMedPubMedCentralCrossRefGoogle Scholar
  358. 358.
    Gura V, Beizai M, Ezon C, Polaschegg HD. Continuous renal replacement therapy for end-stage renal disease. The wearable artificial kidney (WAK). Contrib Nephrol. 2005;149:325–33.PubMedCrossRefGoogle Scholar
  359. 359.
    Roberts M, Ash SR, Lee DB. Innovative peritoneal dialysis: flow-thru and dialysate regeneration. ASAIO J. 1999;45:372–8.PubMedCrossRefGoogle Scholar
  360. 360.
    Ash SR, Janle EM. Continuous flow-through peritoneal dialysis (CFPD): comparison of efficiency to IPD, TPD, and CAPD in an animal model. Perit Dial Int. 1997;17:365–72.PubMedGoogle Scholar
  361. 361.
    Fissell WH, Dubnisheva A, Eldridge AN, Fleischman AJ, Zydney AL, Roy S. High-performance silicon nanopore hemofiltration membranes. J Memb Sci. 2009;326:58–63.PubMedPubMedCentralCrossRefGoogle Scholar
  362. 362.
    Fissell WH, Roy S. The implantable artificial kidney. Semin Dial. 2009;22:665–70.PubMedCrossRefGoogle Scholar
  363. 363.
    Roy S, Goldman K, Marchant R, Zydney A, Brown D, Fleischman A, et al. Implanted renal replacement for end-stage renal disease. Panminerva Med. 2011;53:155–66.PubMedGoogle Scholar
  364. 364.
    Conlisk AT, Datta S, Fissell WH, Roy S. Biomolecular transport through hemofiltration membranes. Ann Biomed Eng. 2009;37:722–36.PubMedPubMedCentralCrossRefGoogle Scholar
  365. 365.
    Kanani DM, Fissell WH, Roy S, Dubnisheva A, Fleischman A, Zydney AL. Permeability – selectivity analysis for ultrafiltration: effect of pore geometry. J Memb Sci. 2010;349:405.PubMedPubMedCentralCrossRefGoogle Scholar
  366. 366.
    Muthusubramaniam L, Lowe R, Fissell WH, Li L, Marchant RE, Desai TA, et al. Hemocompatibility of silicon-based substrates for biomedical implant applications. Ann Biomed Eng. 2011;39:1296–305.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Urology, School of MedicineKyungpook National UniversityDaeguSouth Korea

Personalised recommendations