Skip to main content

Bioreactors for Regenerative Medicine in Urology

  • Chapter
  • First Online:

Abstract

The urogenital system is generally composed of the urinary and reproductive tissues and organs. The primary function of the urinary system, which includes the kidneys, ureters, bladder, and urethra, is to produce and excrete urine. The male reproductive system consists of the penis and testes, while the female reproductive organs include the vagina and uterus. Congenital disorders, infections, tumors, and defects in the urogenital system may result in tissue and organ damage or the complete loss of function [1]. Currently, these conditions may be treated using autografts of non-urological tissue, such as the skin and mucosa. However, this method is limited by donor site morbidity and poor survival of the grafted tissue [2]. Complicated injuries require extensive reconstructive surgery, which often incorporates biomaterial-derived products [3–6]. For instance, disorders in the pelvic muscles have been clinically treated with natural and synthetic material-based slings and meshes; however, this treatment is limited by several issues, including (1) a tendency to perforate the other urogenital organs, (2) retraction of the graft due to shrinkage in vivo, and (3) severe fibrosis resulting from foreign body reactions and other immune responses that inhibit tissue function. Therefore, an alternative treatment is needed to address these limitations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ko IK, Atala A, Yoo JJ. Tissue engineering of the urogenital system. In: Tissue engineering: principles and practices. Taylor & Francis Group, vol. 34: CRC Press; 2012. p. 31–9.

    Google Scholar 

  2. Ninkovic M, Dabernig W. Flap technology for reconstructions of urogenital organs. Curr Opin Urol. 2003;13:483–8.

    Article  PubMed  Google Scholar 

  3. Keys T, Badlani G. The scientific rationale for using biomaterials in stress urinary incontinence and pelvic organ prolapse. Curr Urol Rep. 2011;12:393–5.

    Article  PubMed  Google Scholar 

  4. Comiter CV. Surgery insight: management of failed sling surgery for female stress urinary incontinence. Nat Clin Pract Urol. 2006;3:666–74.

    Article  PubMed  Google Scholar 

  5. Devaseelan P, Fogarty P. The role of synthetic mesh in the treatment of pelvic organ prolapse. Obstet Gynaecol. 2009;11:1–9.

    Google Scholar 

  6. Baessler K, Maher CF. Mesh augmentation during pelvic-floor reconstructive surgery: risks and benefits. Curr Opin Obstet Gynecol. 2006;18:560–6.

    Article  PubMed  Google Scholar 

  7. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367:1241–6.

    Article  PubMed  Google Scholar 

  8. Raya-Rivera A, Esquiliano DR, Yoo JJ, Lopez-Bayghen E, Soker S, Atala A. Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet. 2011;377:1175–82.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Raya-Rivera AM, Esquiliano D, Fierro-Pastrana R, Lopez-Bayghen E, Valencia P, Ordorica-Flores R, Soker S, Yoo JJ, Atala A. Tissue-engineered autologous vaginal organs in patients: a pilot cohort study. Lancet. 2014;384:329–36.

    Article  PubMed  Google Scholar 

  10. Khodabukus A, Baar K. Regulating fibrinolysis to engineer skeletal muscle from the C2C12 cell line. Tissue engineering part C. Methods. 2009;15:501–11.

    CAS  Google Scholar 

  11. Huang YC, Dennis RG, Larkin L, Baar K. Rapid formation of functional muscle in vitro using fibrin gels. J Appl Physiol. 2005;98:706–13.

    Article  PubMed  Google Scholar 

  12. Levenberg S, Rouwkema J, Macdonald M, Garfein ES, Kohane DS, Darland DC, Marini R, van Blitterswijk CA, Mulligan RC, D'Amore PA, Langer R. Engineering vascularized skeletal muscle tissue. Nat Biotechnol. 2005;23:879–84.

    Article  CAS  PubMed  Google Scholar 

  13. Martin I, Wendt D, Heberer M. The role of bioreactors in tissue engineering. Trends Biotechnol. 2004;22:80–6.

    Article  CAS  PubMed  Google Scholar 

  14. Martin Y, Vermette P. Bioreactors for tissue mass culture: design, characterization, and recent advances. Biomaterials. 2005;26:7481–503.

    Article  CAS  PubMed  Google Scholar 

  15. Farhat WA, Yeger H. Does mechanical stimulation have any role in urinary bladder tissue engineering? World J Urol. 2008;26:301–5.

    Article  PubMed  Google Scholar 

  16. Ismadi MZ, Hourigan K, Fouras A. Experimental characterization of fluid mechanics in a spinner flask bioreactor. PRO. 2014;2:753–72.

    Google Scholar 

  17. Kallos MS, Sen A, Behie LA. Large-scale expansion of mammalian neural stem cells: a review. Med Biol Eng Comput. 2003;41:271–82.

    Article  CAS  PubMed  Google Scholar 

  18. Cabrita GJ, Ferreira BS, da Silva CL, Goncalves R, Almeida-Porada G, Cabral JM. Hematopoietic stem cells: from the bone to the bioreactor. Trends Biotechnol. 2003;21:233–40.

    Article  CAS  PubMed  Google Scholar 

  19. Zandstra PW, Bauwens C, Yin T, Liu Q, Schiller H, Zweigerdt R, Pasumarthi KB, Field LJ. Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng. 2003;9:767–78.

    Article  CAS  PubMed  Google Scholar 

  20. Ismadi MZ, Gupta P, Fouras A, Verma P, Jadhav S, Bellare J, Hourigan K. Flow characterization of a spinner flask for induced pluripotent stem cell culture application. PloS One. 2014;9:e106493.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ashok P, Fan Y, Rostami MR, Tzanakakis ES. Aggregate and microcarrier cultures of human pluripotent stem cells in stirred-suspension systems. Methods Mol Biol. 2016;1502:35–52.

    Article  CAS  PubMed  Google Scholar 

  22. Unsworth BR, Lelkes PI. Growing tissues in microgravity. Nat Med. 1998;4:901–7.

    Article  CAS  PubMed  Google Scholar 

  23. Rhee HW, Zhau HE, Pathak S, Multani AS, Pennanen S, Visakorpi T, Chung LW. Permanent phenotypic and genotypic changes of prostate cancer cells cultured in a three-dimensional rotating-wall vessel. In Vitro Cell Dev Biol Anim. 2001;37:127–40.

    Article  CAS  PubMed  Google Scholar 

  24. Licato LL, Prieto VG, Grimm EA. A novel preclinical model of human malignant melanoma utilizing bioreactor rotating-wall vessels. In Vitro Cell Dev Biol Anim. 2001;37:121–6.

    Article  CAS  PubMed  Google Scholar 

  25. Wei X, Li DB, Xu F, Wang Y, Zhu YC, Li H, Wang KJ. A novel bioreactor to simulate urinary bladder mechanical properties and compliance for bladder functional tissue engineering. Chin Med J. 2011;124:568–73.

    PubMed  Google Scholar 

  26. Lei X, Deng Z, Duan E. Uniform Embryoid body production and enhanced Mesendoderm differentiation with murine embryonic stem cells in a rotary suspension bioreactor. Methods Mol Biol. 2016;1502:63–75.

    Article  CAS  PubMed  Google Scholar 

  27. Vunjak-Novakovic G, Martin I, Obradovic B, Treppo S, Grodzinsky AJ, Langer R, Freed LE. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthopaedic Res. 1999;17:130–8.

    Article  CAS  Google Scholar 

  28. Pei M, Solchaga LA, Seidel J, Zeng L, Vunjak-Novakovic G, Caplan AI, Freed LE. Bioreactors mediate the effectiveness of tissue engineering scaffolds. FASEB J. 2002;16:1691–4.

    CAS  PubMed  Google Scholar 

  29. Sakai K. Dialysis membranes for blood purification. Front Med Biol Eng. 2000;10:117–29.

    Article  CAS  PubMed  Google Scholar 

  30. Lipps B, Stewart RD, Perkins H, Holmes GW, McLain EA, Rolfs MR, Oja P. The hollow fiber artificial kidney. Trans Am Soc Artif Intern Organs. 1967;13:200–7.

    Google Scholar 

  31. Clark WR. Hemodialyzer membranes and configurations: a historical perspective. Semin Dial. 2000;13:309–11.

    Article  CAS  PubMed  Google Scholar 

  32. Patankar D, Oolman T. Wall-growth hollow-fiber reactor for tissue culture: I. Preliminary experiments Biotechnology and bioengineering. 1990;36:97–103.

    Article  CAS  PubMed  Google Scholar 

  33. Storm MP, Sorrell I, Shipley R, Regan S, Luetchford KA, Sathish J, Webb S, Ellis MJ. Hollow fiber bioreactors for in vivo-like mammalian tissue culture. J Vis Exp. 2016;111:53431.

    Google Scholar 

  34. Wung N, Acott SM, Tosh D, Ellis MJ. Hollow fibre membrane bioreactors for tissue engineering applications. Biotechnol Lett. 2014;36:2357–66.

    Article  CAS  PubMed  Google Scholar 

  35. Roberts I, Baila S, Rice RB, Janssens ME, Nguyen K, Moens N, Ruban L, Hernandez D, Coffey P, Mason C. Scale-up of human embryonic stem cell culture using a hollow fibre bioreactor. Biotechnol Lett. 2012;34:2307–15.

    Article  CAS  PubMed  Google Scholar 

  36. Nold P, Brendel C, Neubauer A, Bein G, Hackstein H. Good manufacturing practice-compliant animal-free expansion of human bone marrow derived mesenchymal stroma cells in a closed hollow-fiber-based bioreactor. Biochem Biophys Res Commun. 2013;430:325–30.

    Article  CAS  PubMed  Google Scholar 

  37. Usuludin SB, Cao X, Lim M. Co-culture of stromal and erythroleukemia cells in a perfused hollow fiber bioreactor system as an in vitro bone marrow model for myeloid leukemia. Biotechnol Bioeng. 2012;109:1248–58.

    Article  CAS  PubMed  Google Scholar 

  38. Housler GJ, Miki T, Schmelzer E, Pekor C, Zhang X, Kang L, Voskinarian-Berse V, Abbot S, Zeilinger K, Gerlach JC. Compartmental hollow fiber capillary membrane-based bioreactor technology for in vitro studies on red blood cell lineage direction of hematopoietic stem cells. Tissue Eng Part C Methods. 2012;18:133–42.

    Article  CAS  PubMed  Google Scholar 

  39. Yamazoe H, Iwata H. Efficient generation of dopaminergic neurons from mouse embryonic stem cells enclosed in hollow fibers. Biomaterials. 2006;27:4871–80.

    Article  CAS  PubMed  Google Scholar 

  40. Amimoto N, Mizumoto H, Nakazawa K, Ijima H, Funatsu K, Kajiwara T. Hepatic differentiation of mouse embryonic stem cells and induced pluripotent stem cells during organoid formation in hollow fibers. Tissue Eng Part A. 2011;17:2071–8.

    Article  CAS  PubMed  Google Scholar 

  41. Sussman NL, Kelly JH. Extracorporeal liver support: cell-based therapy for the failing liver. Am J Kidney Dis. 1997;30:S66–71.

    Article  CAS  PubMed  Google Scholar 

  42. Kelly JH, Koussayer T, He D, Chong MG, Shang TA, Whisennand HH, Sussman NL. Assessment of an extracorporeal liver assist device in anhepatic dogs. Artif Organs. 1992;16:418–22.

    Article  CAS  PubMed  Google Scholar 

  43. Struecker B, Raschzok N, Sauer IM. Liver support strategies: cutting-edge technologies. Nat Rev Gastroenterol Hepatol. 2014;11:166–76.

    Article  CAS  PubMed  Google Scholar 

  44. Jansen J, Fedecostante M, Wilmer MJ, van den Heuvel LP, Hoenderop JG, Masereeuw R. Biotechnological challenges of bioartificial kidney engineering. Biotechnol Adv. 2014;32:1317–27.

    Article  CAS  PubMed  Google Scholar 

  45. Humes HD, Buffington DA, MacKay SM, Funke AJ, Weitzel WF. Replacement of renal function in uremic animals with a tissue-engineered kidney. Nat Biotechnol. 1999;17:451–5.

    Article  CAS  PubMed  Google Scholar 

  46. Gleeson MJ, Griffith DP. The use of alloplastic biomaterials in bladder substitution. J Urol. 1992;148:1377–82.

    Article  CAS  PubMed  Google Scholar 

  47. Schultheiss D, Gabouev AI, Cebotari S, Tudorache I, Walles T, Schlote N, Wefer J, Kaufmann PM, Haverich A, Jonas U, Stief CG, Mertsching H. Biological vascularized matrix for bladder tissue engineering: matrix preparation, reseeding technique and short-term implantation in a porcine model. J Urol. 2005;173:276–80.

    Article  PubMed  Google Scholar 

  48. Danielsson C, Ruault S, Basset-Dardare A, Frey P. Modified collagen fleece, a scaffold for transplantation of human bladder smooth muscle cells. Biomaterials. 2006;27:1054–60.

    Article  CAS  PubMed  Google Scholar 

  49. Schoeller T, Lille S, Stenzl A, Ninkovic M, Piza H, Otto A, Russell RC, Wechselberger G. Bladder reconstruction using a prevascularized capsular tissue seeded with urothelial cells. J Urol. 2001;165:980–5.

    Article  CAS  PubMed  Google Scholar 

  50. Kanematsu A, Yamamoto S, Noguchi T, Ozeki M, Tabata Y, Ogawa O. Bladder regeneration by bladder acellular matrix combined with sustained release of exogenous growth factor. J Urol. 2003;170:1633–8.

    Article  CAS  PubMed  Google Scholar 

  51. Yoo JJ, Meng J, Oberpenning F, Atala A. Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology. 1998;51:221–5.

    Article  CAS  PubMed  Google Scholar 

  52. Pattison MA, Wurster S, Webster TJ, Haberstroh KM. Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications. Biomaterials. 2005;26:2491–500.

    Article  CAS  PubMed  Google Scholar 

  53. Korossis S, Bolland F, Ingham E, Fisher J, Kearney J, Southgate J. Review: tissue engineering of the urinary bladder: considering structure-function relationships and the role of mechanotransduction. Tissue Eng. 2006;12:635–44.

    Article  PubMed  Google Scholar 

  54. Wallis MC, Yeger H, Cartwright L, Shou Z, Radisic M, Haig J, Suoub M, Antoon R, Farhat WA. Feasibility study of a novel urinary bladder bioreactor. Tissue Eng Part A. 2008;14:339–48.

    Article  CAS  PubMed  Google Scholar 

  55. Davis NF, Mooney R, Piterina AV, Callanan A, McGuire BB, Flood HD, McGloughlin TM. Construction and evaluation of urinary bladder bioreactor for urologic tissue-engineering purposes. Urology. 2011;78:954–60.

    Article  PubMed  Google Scholar 

  56. Davis NF, Callanan A. Development of a bladder bioreactor for tissue engineering in urology. Methods Mol Biol. 2016;1502:213–21.

    Article  CAS  PubMed  Google Scholar 

  57. Campbell GR, Turnbull G, Xiang L, Haines M, Armstrong S, Rolfe BE, Campbell JH. The peritoneal cavity as a bioreactor for tissue engineering visceral organs: bladder, uterus and vas deferens. J Tissue Eng Regen Med. 2008;2:50–60.

    Article  CAS  PubMed  Google Scholar 

  58. Kajbafzadeh AM, Esfahani SA, Sadeghi Z, Elmi A, Monajemzadeh M. Application of different scaffolds for bladder wall regeneration: the bladder as a natural bioreactor. Tissue Eng Part A. 2012;18:882–7.

    Article  CAS  PubMed  Google Scholar 

  59. Fu Q, Deng CL, Zhao RY, Wang Y, Cao Y. The effect of mechanical extension stimulation combined with epithelial cell sorting on outcomes of implanted tissue-engineered muscular urethras. Biomaterials. 2014;35:105–12.

    Article  CAS  PubMed  Google Scholar 

  60. le Roux PJ. Endoscopic urethroplasty with unseeded small intestinal submucosa collagen matrix grafts: a pilot study. J Urol. 2005;173:140–3.

    Article  PubMed  Google Scholar 

  61. Li C, Xu Y, Song L, Fu Q, Cui L, Yin S. Preliminary experimental study of tissue-engineered urethral reconstruction using oral keratinocytes seeded on BAMG. Urol Int. 2008;81:290–5.

    Article  PubMed  Google Scholar 

  62. Li C, Xu YM, Song LJ, Fu Q, Cui L, Yin S. Urethral reconstruction using oral keratinocyte seeded bladder acellular matrix grafts. J Urol. 2008;180:1538–42.

    Article  PubMed  Google Scholar 

  63. Dahms SE, Piechota HJ, Nunes L, Dahiya R, Lue TF, Tanagho EA. Free ureteral replacement in rats: regeneration of ureteral wall components in the acellular matrix graft. Urology. 1997;50:818–25.

    Article  CAS  PubMed  Google Scholar 

  64. Osman Y, Shokeir A, Gabr M, El-Tabey N, Mohsen T, El-Baz M. Canine ureteral replacement with long acellular matrix tube: is it clinically applicable? J Urol. 2004;172:1151–4.

    Article  CAS  PubMed  Google Scholar 

  65. Shen J, Fu X, Ou L, Zhang M, Guan Y, Wang K, Che Y, Kong D, Steinhof G, Li W, Yu Y, Ma N. Construction of ureteral grafts by seeding urothelial cells and bone marrow mesenchymal stem cells into polycaprolactone-lecithin electrospun fibers. Int J Artif Organs. 2010;33:161–70.

    CAS  PubMed  Google Scholar 

  66. Shi JG, Fu WJ, Wang XX, Xu YD, Li G, Hong BF, Wang Y, Du ZY, Zhang X. Tissue engineering of ureteral grafts by seeding urothelial differentiated hADSCs onto biodegradable ureteral scaffolds. J Biomed Mater Res A. 2012;100:2612–22.

    Article  PubMed  Google Scholar 

  67. Vardar E, Engelhardt EM, Larsson HM, Mouloungui E, Pinnagoda K, Hubbell JA, Frey P. Tubular compressed collagen scaffolds for ureteral tissue engineering in a flow bioreactor system. Tissue Eng Part A. 2015;21:2334–45.

    Article  CAS  PubMed  Google Scholar 

  68. Seifarth V, Gossmann M, Janke HP, Grosse JO, Becker C, Heschel I, Artmann GM, Temiz Artmann A. Development of a bioreactor to culture tissue engineered ureters based on the application of tubular OPTIMAIX 3D scaffolds. Urol Int. 2015;95:106–13.

    Article  CAS  PubMed  Google Scholar 

  69. Wang PC, Takezawa T. Reconstruction of renal glomerular tissue using collagen vitrigel scaffold. J Biosci Bioeng. 2005;99:529–40.

    Article  CAS  PubMed  Google Scholar 

  70. Lu SH, Lin Q, Liu YN, Gao Q, Hao T, Wang Y, Zhou J, Wang H, Du Z, Wu J, Wang CY. Self-assembly of renal cells into engineered renal tissues in collagen/Matrigel scaffold in vitro. J Tissue Eng Regen Med. 2012;6:786–92.

    Article  PubMed  Google Scholar 

  71. Guimaraes-Souza NK, Yamaleyeva LM, AbouShwareb T, Atala A, Yoo JJ. In vitro reconstitution of human kidney structures for renal cell therapy. Nephrol Dial Transplant. 2012;27:3082–90.

    Article  CAS  PubMed  Google Scholar 

  72. Rosines E, Johkura K, Zhang X, Schmidt HJ, Decambre M, Bush KT, Nigam SK. Constructing kidney-like tissues from cells based on programs for organ development: toward a method of in vitro tissue engineering of the kidney. Tissue Eng Part A. 2010;16:2441–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yoo JJ, Ashkar S, Atala A. Creation of functional kidney structures with excretion of kidney-like fluid in vivo. Pediatrics. 1996;98(suppl):605.

    Google Scholar 

  74. Kim SS, Park HJ, Han J, Choi CY, Kim BS. Renal tissue reconstitution by the implantation of renal segments on biodegradable polymer scaffolds. Biotechnol Lett. 2003;25:1505–8.

    Article  CAS  PubMed  Google Scholar 

  75. Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H, Nishinakamura R. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell. 2014;14:53–67.

    Article  CAS  PubMed  Google Scholar 

  76. Sharmin S, Taguchi A, Kaku Y, Yoshimura Y, Ohmori T, Sakuma T, Mukoyama M, Yamamoto T, Kurihara H, Nishinakamura R. Human induced pluripotent stem cell-derived podocytes mature into vascularized glomeruli upon experimental transplantation. J Am Soc Nephrol. 2016;27:1778–91.

    Article  CAS  PubMed  Google Scholar 

  77. Lam AQ, Freedman BS, Morizane R, Lerou PH, Valerius MT, Bonventre JV. Rapid and efficient differentiation of human pluripotent stem cells into intermediate mesoderm that forms tubules expressing kidney proximal tubular markers. J Am Soc Nephrol. 2014;25:1211–25.

    Article  CAS  PubMed  Google Scholar 

  78. Morizane R, Monkawa T, Itoh H. Differentiation of murine embryonic stem and induced pluripotent stem cells to renal lineage in vitro. Biochem Biophys Res Commun. 2009;390:1334–9.

    Article  CAS  PubMed  Google Scholar 

  79. Ko IK, Abolbashari M, Huling J, Kim C, Mirmalek Sani SH, Moradi M, Orlando G, Jackson JD, AbouShwareb T, Soker S, Yoo JJ, Atala A. Enhanced re-endothelialization of acellular kidney scaffolds for whole organ engineering via antibody conjugation of vasculatures. Technology. 2014;2:243–53.

    Article  Google Scholar 

  80. Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med. 2013;19:646–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ross EA, Williams MJ, Hamazaki T, Terada N, Clapp WL, Adin C, Ellison GW, Jorgensen M, Batich CD. Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. J Am Soc Nephrol. 2009;20:2338–47.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Arenas-Herrera JE, Ko IK, Atala A, Yoo JJ. Decellularization for whole organ bioengineering. Biomed Mater. 2013;8:014106.

    Article  CAS  PubMed  Google Scholar 

  83. Ross EA, Abrahamson DR, John PS, Clapp WL, Williams MJ, Terada N, Hamazaki T, Ellison GW, Batich CD. Mouse stem cells seeded into decellularized rat kidney scaffolds endothelialize and remodel basement membranes. Organogenesis. 2012;8:49–55.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Uzarski JS, Bijonowski BM, Wang B, Ward HH, Wandinger-Ness A, Miller WM, Wertheim JA. Dual-purpose bioreactors to monitor noninvasive physical and biochemical markers of kidney and liver scaffold recellularization. Tissue Eng C Methods. 2015;21:1032–43.

    Article  CAS  Google Scholar 

  85. Abolbashari M, Agcaoili SM, Lee MK, Ko IK, Aboushwareb T, Jackson JD, Yoo JJ, Atala A. Repopulation of porcine kidney scaffold using porcine primary renal cells. Acta Biomater. 2016;29:52–61.

    Article  CAS  PubMed  Google Scholar 

  86. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78:7634–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kim IH, Ko IK, Atala A, Yoo JJ. Whole kidney engineering for clinical translation. Curr Opin Organ Transplant. 2015;20:165–70.

    Article  CAS  PubMed  Google Scholar 

  88. Lawton JS, Moazami N, Pasque MK, Moon MR, Damiano RJ Jr. Early stenosis of Medtronic mosaic porcine valves in the aortic position. J Thorac Cardiovasc Surg. 2009;137:1556–7.

    Article  PubMed  Google Scholar 

  89. Iannotti JP, Codsi MJ, Kwon YW, Derwin K, Ciccone J, Brems JJ. Porcine small intestine submucosa augmentation of surgical repair of chronic two-tendon rotator cuff tears. A randomized, controlled trial. J Bone Joint Surg Am. 2006;88:1238–44.

    PubMed  Google Scholar 

  90. Sullivan DC, Mirmalek-Sani SH, Deegan DB, Baptista PM, Aboushwareb T, Atala A, Yoo JJ. Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials. 2012;33:7756–64.

    Article  CAS  PubMed  Google Scholar 

  91. Martin I, Smith T, Wendt D. Bioreactor-based roadmap for the translation of tissue engineering strategies into clinical products. Trends Biotechnol. 2009;27:495–502.

    Article  CAS  PubMed  Google Scholar 

  92. Radtke AL, Herbst-Kralovetz MM. Culturing and applications of rotating wall vessel bioreactor derived 3D epithelial cell models. J Vis Exp. 2012;62:3868.

    Google Scholar 

  93. Barrila J, Radtke AL, Crabbe A, Sarker SF, Herbst-Kralovetz MM, Ott CM, Nickerson CA. Organotypic 3D cell culture models: using the rotating wall vessel to study host-pathogen interactions. Nat Rev Microbiol. 2010;8:791–801.

    Article  CAS  PubMed  Google Scholar 

  94. Komeya M, Kimura H, Nakamura H, Yokonishi T, Sato T, Kojima K, Hayashi K, Katagiri K, Yamanaka H, Sanjo H, Yao M, Kamimura S, Inoue K, Ogonuki N, Ogura A, Fujii T, Ogawa T. Long-term ex vivo maintenance of testis tissues producing fertile sperm in a microfluidic device. Sci Rep. 2016;6:21472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. McCormack MC, McCallum S, Behr B. A novel microfluidic device for male subfertility screening. J Urol. 2006;175:2223–7. discussion 2227

    Article  PubMed  Google Scholar 

  96. Schneider M, Schuler J, Hofflin R, Korzeniewski N, Grullich C, Roth W, Teber D, Hadaschik B, Pahernik S, Hohenfellner M, Duensing S. Phenotypic drug screening and target validation for improved personalized therapy reveal the complexity of phenotype-genotype correlations in clear cell renal cell carcinoma. Urol Oncol. 2014;32:877–84.

    Article  CAS  PubMed  Google Scholar 

  97. Skardal A, Devarasetty M, Forsythe S, Atala A, Soker S. A reductionist metastasis-on-a-chip platform for in vitro tumor progression modeling and drug screening. Biotechnol Bioeng. 2016;113:2020–32.

    Article  CAS  PubMed  Google Scholar 

  98. Skardal A, Shupe T, Atala A. Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling. Drug Discov Today. 2016;21:1399–411.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

I wish to thank Ms. Alicia Lee for editorial assistance with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In Kap Ko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ko, I.K., Atala, A., Yoo, J.J. (2018). Bioreactors for Regenerative Medicine in Urology. In: Kim, B. (eds) Clinical Regenerative Medicine in Urology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2723-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2723-9_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2722-2

  • Online ISBN: 978-981-10-2723-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics