Skip to main content

Current Developments and Future Perspectives of Tissue Engineering and Regenerative Medicine

  • Chapter
  • First Online:
Clinical Regenerative Medicine in Urology
  • 1219 Accesses

Abstract

Tissue engineering and regenerative medicine (TERM) is an interdisciplinary field encompassing many disciplines, including engineering, medicine, and science. The field has gained an enormous attention due to its potential to replace damaged human tissues and organs and restore normal function [1–3]. Although the early concept of tissue engineering was developed based on cell culture techniques, recent advances in the field combine multiple innovative technologies to accelerate the translation of clinical therapies. In fact, a number of TERM technologies have advanced to human clinical trials and commercialized [4, 5]. In this chapter, we review the current developments and recent progresses made in the field of TERM and discuss the most relevant challenges and future perspectives in the translation of TERM research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kemp P. History of regenerative medicine: looking backwards to move forwards. Regen Med. 2006;1(5):653–69.

    Article  PubMed  Google Scholar 

  2. Vacanti CA. The history of tissue engineering. J Cell Mol Med. 2006;10(3):569–76.

    Article  PubMed  Google Scholar 

  3. Mao AS, Mooney DJ. Regenerative medicine: current therapies and future directions. Proc Natl Acad Sci U S A. 2015;112(47):14452–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fisher MB, Mauck RL. Tissue engineering and regenerative medicine: recent innovations and the transition to translation. Tissue Eng Part B Rev. 2013;19(1):1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gemmiti C. Tissue engineering/regenerative medicine ventures should invest early in market research to understand the future market's needs. Tissue Eng Part B-Re. 2013;19(2):97–8.

    Article  Google Scholar 

  6. Vacanti JP. Tissue engineering: from bench to bedside via commercialization. Surgery. 2008;143(2):181–3.

    Article  PubMed  Google Scholar 

  7. Martin I, Smith T, Wendt D. Bioreactor-based roadmap for the translation of tissue engineering strategies into clinical products. Trends Biotechnol. 2009;27(9):495–502.

    Article  CAS  PubMed  Google Scholar 

  8. Caione P, Boldrini R, Salerno A, Nappo SG. Bladder augmentation using acellular collagen biomatrix: a pilot experience in exstrophic patients. Pediatr Surg Int. 2012;28(4):421–8.

    Article  PubMed  Google Scholar 

  9. de Jonge PK, Simaioforidis V, Geutjes PJ, Oosterwijk E, Feitz WF. Recent advances in ureteral tissue engineering. Curr Urol Rep. 2015;16(1):465.

    Article  PubMed  Google Scholar 

  10. Horst M, Madduri S, Gobet R, Sulser T, Milleret V, Hall H, et al. Engineering functional bladder tissues. J Tissue Eng Regen Med. 2013;7(7):515–22.

    Article  CAS  PubMed  Google Scholar 

  11. de Kemp V, de Graaf P, Fledderus JO, Ruud Bosch JL, de Kort LM. Tissue engineering for human urethral reconstruction: systematic review of recent literature. PLoS One. 2015;10(2):e0118653.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367(9518):1241–6.

    Article  PubMed  Google Scholar 

  13. Carr LK, Robert M, Kultgen PL, Herschorn S, Birch C, Murphy M, et al. Autologous muscle derived cell therapy for stress urinary incontinence: a prospective, dose ranging study. J Urol. 2013;189(2):595–601.

    Article  PubMed  Google Scholar 

  14. Orabi H, AbouShwareb T, Zhang Y, Yoo JJ, Atala A. Cell-seeded tubularized scaffolds for reconstruction of long urethral defects: a preclinical study. Eur Urol. 2013;63(3):531–8.

    Article  PubMed  Google Scholar 

  15. Schnabel M, Marlovits S, Eckhoff G, Fichtel I, Gotzen L, Vecsei V, et al. Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthr Cartil. 2002;10(1):62–70.

    Article  CAS  PubMed  Google Scholar 

  16. Wagers AJ. The stem cell niche in regenerative medicine. Cell Stem Cell. 2012;10(4):362–9.

    Article  CAS  PubMed  Google Scholar 

  17. Bianco P, Cao X, Frenette PS, Mao JJ, Robey PG, Simmons PJ, et al. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat Med. 2013;19(1):35–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mahla RS. Stem cells applications in regenerative medicine and disease therapeutics. Int J Cell Biol. 2016;2016:6940283.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kim JH, Song YS. Current status of stem cell therapy in urology. Korean J Urol. 2015;56(6):409–11.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fu Q, Cao YL. Tissue engineering and stem cell application of urethroplasty: from bench to bedside. Urology. 2012;79(2):246–53.

    Article  PubMed  Google Scholar 

  21. King NM, Perrin J. Ethical issues in stem cell research and therapy. Stem Cell Res Ther. 2014;5(4):85.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tachibana M, Amato P, Sparman M, Gutierrez NM, Tippner-Hedges R, Ma H, et al. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell. 2013;153(6):1228–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu G, Pareta RA, Wu R, Shi Y, Zhou X, Liu H, et al. Skeletal myogenic differentiation of urine-derived stem cells and angiogenesis using microbeads loaded with growth factors. Biomaterials. 2013;34(4):1311–26.

    Article  CAS  PubMed  Google Scholar 

  24. Kobolak J, Dinnyes A, Memic A, Khademhosseini A, Mobasheri A. Mesenchymal stem cells: identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods. 2016;99:62–8.

    Article  CAS  PubMed  Google Scholar 

  25. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28.

    Article  CAS  PubMed  Google Scholar 

  26. Aust L, Devlin B, Foster SJ, Halvorsen YD, Hicok K, du Laney T, et al. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy. 2004;6(1):7–14.

    Article  CAS  PubMed  Google Scholar 

  27. Rhie JW. Adipose-derived stem cells: characterization and clinical application. J Korean Med Assoc. 2012;55(8):757–69.

    Article  Google Scholar 

  28. Qin D, Long T, Deng J, Zhang Y. Urine-derived stem cells for potential use in bladder repair. Stem Cell Res Ther. 2014;5(3):69.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dziadosz M, Basch RS, Young BK. Human amniotic fluid: a source of stem cells for possible therapeutic use. Am J Obstet Gynecol. 2016;214(3):321–7.

    Article  PubMed  Google Scholar 

  30. De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25(1):100–6.

    Article  PubMed  CAS  Google Scholar 

  31. Murphy SV, Atala A. Amniotic fluid and placental membranes: unexpected sources of highly multipotent cells. Semin Reprod Med. 2013;31(1):62–8.

    Article  CAS  PubMed  Google Scholar 

  32. Chun SY, Kwon JB, Chae SY, Lee JK, Bae JS, Kim BS, et al. Combined injection of three different lineages of early-differentiating human amniotic fluid-derived cells restores urethral sphincter function in urinary incontinence. BJU Int. 2014;114(5):770–83.

    Article  PubMed  Google Scholar 

  33. Wilson KD, Wu JC. Induced pluripotent stem cells. JAMA. 2015;313(16):1613–4.

    Article  PubMed  Google Scholar 

  34. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  CAS  PubMed  Google Scholar 

  35. Shi Y. Induced pluripotent stem cells, new tools for drug discovery and new hope for stem cell therapies. Curr Mol Pharmacol. 2009;2(1):15–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Burridge PW, Li YF, Matsa E, Wu H, Ong SG, Sharma A, et al. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med. 2016;22(5):547–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.

    Article  CAS  PubMed  Google Scholar 

  38. Wang Z, Wen Y, Li YH, Wei Y, Green M, Wani P, et al. Smooth muscle precursor cells derived from human pluripotent stem cells for treatment of stress urinary incontinence. Stem Cells Dev. 2016;25(6):453–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature. 2011;471(7336):68–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Das AK, Pal R. Induced pluripotent stem cells (iPSCs): the emergence of a new champion in stem cell technology-driven biomedical applications. J Tissue Eng Regen Med. 2010;4:413–21.

    CAS  PubMed  Google Scholar 

  41. O'Malley J, Woltjen K, Kaji K. New strategies to generate induced pluripotent stem cells. Curr Opin Biotechnol. 2009;20(5):516–21.

    Article  PubMed  CAS  Google Scholar 

  42. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 2010;463:1035–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang Y, McNeill E, Tian H, Soker S, Andersson KE, Yoo JJ, et al. Urine derived cells are a potential source for urological tissue reconstruction. J Urol. 2008;180(5):2226–33.

    Article  CAS  PubMed  Google Scholar 

  44. Keane TJ, Badylak SF. Biomaterials for tissue engineering applications. Semin Pediatr Surg. 2014;23(3):112–8.

    Article  PubMed  Google Scholar 

  45. Dawson E, Mapili G, Erickson K, Taqvi S, Roy K. Biomaterials for stem cell differentiation. Adv Drug Deliv Rev. 2008;60(2):215–28.

    Article  CAS  PubMed  Google Scholar 

  46. Hunt JA, Chen R, van Veen T, Bryan N. Hydrogels for tissue engineering and regenerative medicine. J Mater Chem B. 2014;2(33):5319–38.

    Article  CAS  Google Scholar 

  47. El-Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering: Progress and challenges. Global cardiology science & practice. 2013;2013(3):316–42.

    Article  Google Scholar 

  48. Koutsopoulos S. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: progress, design guidelines, and applications. J Biomed Mater Res A. 2016;104(4):1002–16.

    Article  CAS  PubMed  Google Scholar 

  49. Mieszawska AJ, Kaplan DL. Smart biomaterials – regulating cell behavior through signaling molecules. BMC Biol. 2010;8:59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Zambuzzi WF, Coelho PG, Alves GG, Granjeiro JM. Intracellular signal transduction as a factor in the development of "smart" biomaterials for bone tissue engineering. Biotechnol Bioeng. 2011;108(6):1246–50.

    Article  CAS  PubMed  Google Scholar 

  51. Lee SJ, Van Dyke M, Atala A, Yoo JJ. Host cell mobilization for in situ tissue regeneration. Rejuvenation Res. 2008;11(4):747–56.

    Article  PubMed  Google Scholar 

  52. Kim JH, Jung Y, Kim BS, Kim SH. Stem cell recruitment and angiogenesis of neuropeptide substance P coupled with self-assembling peptide nanofiber in a mouse hind limb ischemia model. Biomaterials. 2013;34(6):1657–68.

    Article  CAS  PubMed  Google Scholar 

  53. Ko IK, Lee SJ, Atala A, Yoo JJ. In situ tissue regeneration through host stem cell recruitment. Exp Mol Med. 2013;45:e57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng. 2011;13:27–53.

    Article  CAS  PubMed  Google Scholar 

  55. Schaefer M, Kaiser A, Stehr M, Beyer HJ. Bladder augmentation with small intestinal submucosa leads to unsatisfactory long-term results. J Pediatr Urol. 2013;9(6 Pt A):878–83.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang F, Liao L. Tissue engineered cystoplasty augmentation for treatment of neurogenic bladder using small intestinal submucosa: an exploratory study. J Urol. 2014;192(2):544–50.

    Article  PubMed  Google Scholar 

  57. Joseph DB, Borer JG, De Filippo RE, Hodges SJ, McLorie GA. Autologous cell seeded biodegradable scaffold for augmentation cystoplasty: phase II study in children and adolescents with spina bifida. J Urol. 2014;191(5):1389–95.

    Article  CAS  PubMed  Google Scholar 

  58. Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi MA, Shulman C, et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med. 2010;16(7):814–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Guyette JP, Gilpin SE, Charest JM, Tapias LF, Ren X, Ott HC. Perfusion decellularization of whole organs. Nat Protoc. 2014;9(6):1451–68.

    Article  CAS  PubMed  Google Scholar 

  60. Kitahara H, Yagi H, Tajima K, Okamoto K, Yoshitake A, Aeba R, et al. Heterotopic transplantation of a decellularized and recellularized whole porcine heart. Interact Cardiovasc Thorac Surg. 2016;22(5):571–9.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Folkman J, Hochberg M. Self-regulation of growth in three dimensions. J Exp Med. 1973;138(4):745–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Helmlinger G, Yuan F, Dellian M, Jain RK. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med. 1997;3(2):177–82.

    Article  CAS  PubMed  Google Scholar 

  63. Novosel EC, Kleinhans C, Kluger PJ. Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev. 2011;63(4–5):300–11.

    Article  CAS  PubMed  Google Scholar 

  64. Imbeault A, Bernard G, Rousseau A, Morissette A, Chabaud S, Bouhout S, et al. An endothelialized urothelial cell-seeded tubular graft for urethral replacement. Can Urol Assoc J. 2013;7(1–2):E4–9.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mercado-Pagan AE, Stahl AM, Shanjani Y, Yang Y. Vascularization in bone tissue engineering constructs. Ann Biomed Eng. 2015;43(3):718–29.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sun X, Altalhi W, Nunes SS. Vascularization strategies of engineered tissues and their application in cardiac regeneration. Adv Drug Deliv Rev. 2016;96:183–94.

    Article  CAS  PubMed  Google Scholar 

  67. Qazi TH, Mooney DJ, Pumberger M, Geissler S, Duda GN. Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends. Biomaterials. 2015;53:502–21.

    Article  CAS  PubMed  Google Scholar 

  68. Frueh FS, Menger MD, Lindenblatt N, Giovanoli P, Laschke MW. Current and emerging vascularization strategies in skin tissue engineering. Crit Rev Biotechnol. 2017;37:613–25.

    Article  CAS  PubMed  Google Scholar 

  69. Stabler CT, Caires LC Jr, Mondrinos MJ, Marcinkiewicz C, Lazarovici P, Wolfson MR, et al. Enhanced re-endothelialization of decellularized rat lungs. Tissue Eng Part C Methods. 2016;22(5):439–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rouwkema J, Khademhosseini A. Vascularization and angiogenesis in tissue engineering: beyond creating static networks. Trends Biotechnol. 2016;34(9):733–45.

    Article  CAS  PubMed  Google Scholar 

  71. Jia W, Tang H, Wu J, Hou X, Chen B, Chen W, et al. Urethral tissue regeneration using collagen scaffold modified with collagen binding VEGF in a beagle model. Biomaterials. 2015;69:45–55.

    Article  CAS  PubMed  Google Scholar 

  72. Jiang X, Xiong Q, Xu G, Lin H, Fang X, Cui D, et al. VEGF-loaded nanoparticle-modified BAMAs enhance angiogenesis and inhibit graft shrinkage in tissue-engineered bladder. Ann Biomed Eng. 2015;43(10):2577–86.

    Article  PubMed  Google Scholar 

  73. Shepherd BR, Enis DR, Wang F, Suarez Y, Pober JS, Schechner JS. Vascularization and engraftment of a human skin substitute using circulating progenitor cell-derived endothelial cells. FASEB J. 2006;20(10):1739–41.

    Article  CAS  PubMed  Google Scholar 

  74. Levenberg S, Rouwkema J, Macdonald M, Garfein ES, Kohane DS, Darland DC, et al. Engineering vascularized skeletal muscle tissue. Nat Biotechnol. 2005;23(7):879–84.

    Article  CAS  PubMed  Google Scholar 

  75. Kaully T, Kaufman-Francis K, Lesman A, Levenberg S. Vascularization-the conduit to viable engineered tissues. Tissue Eng Part B Rev. 2009;15(2):159–69.

    Article  CAS  PubMed  Google Scholar 

  76. Kim JH, Jung Y, Kim SH, Sun K, Choi J, Kim HC, et al. The enhancement of mature vessel formation and cardiac function in infarcted hearts using dual growth factor delivery with self-assembling peptides. Biomaterials. 2011;32(26):6080–8.

    Article  CAS  PubMed  Google Scholar 

  77. Utzinger U, Baggett B, Weiss JA, Hoying JB, Edgar LT. Large-scale time series microscopy of neovessel growth during angiogenesis. Angiogenesis. 2015;18(3):219–32.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Laschke MW, Menger MD. Prevascularization in tissue engineering: current concepts and future directions. Biotechnol Adv. 2016;34(2):112–21.

    Article  CAS  PubMed  Google Scholar 

  79. Baranski JD, Chaturvedi RR, Stevens KR, Eyckmans J, Carvalho B, Solorzano RD, et al. Geometric control of vascular networks to enhance engineered tissue integration and function. Proc Natl Acad Sci U S A. 2013;110(19):7586–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA. Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci U S A. 2016;113(12):3179–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lee VK, Kim DY, Ngo H, Lee Y, Seo L, Yoo SS, et al. Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials. 2014;35(28):8092–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tuzlakoglu K, Reis RL. Biodegradable polymeric fiber structures in tissue engineering. Tissue Eng Part B Rev. 2009;15(1):17–27.

    Article  CAS  PubMed  Google Scholar 

  83. Quint C, Kondo Y, Manson RJ, Lawson JH, Dardik A, Niklason LE. Decellularized tissue-engineered blood vessel as an arterial conduit. Proc Natl Acad Sci U S A. 2011;108(22):9214–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Plunkett N, O’Brien FJ. Bioreactors in tissue engineering. Technol Health Care. 2011;19(1):55–69.

    PubMed  Google Scholar 

  85. Hansmann J, Groeber F, Kahlig A, Kleinhans C, Walles H. Bioreactors in tissue engineering – principles, applications and commercial constraints. Biotechnol J. 2013;8(3):298–307.

    Article  CAS  PubMed  Google Scholar 

  86. Gardel LS, Serra LA, Reis RL, Gomes ME. Use of perfusion bioreactors and large animal models for long bone tissue engineering. Tissue Eng Part B-Re. 2014;20(2):126–46.

    Article  CAS  Google Scholar 

  87. Tocchio A, Tamplenizza M, Martello F, Gerges I, Rossi E, Argentiere S, et al. Versatile fabrication of vascularizable scaffolds for large tissue engineering in bioreactor. Biomaterials. 2015;45:124–31.

    Article  CAS  PubMed  Google Scholar 

  88. Amrollahi P, Tayebi L. Bioreactors for heart valve tissue engineering: a review. J Chem Technol Biot. 2016;91(4):847–56.

    Article  CAS  Google Scholar 

  89. Murphy SV, Atala A. Organ engineering–combining stem cells, biomaterials, and bioreactors to produce bioengineered organs for transplantation. BioEssays. 2013;35(3):163–72.

    Article  CAS  PubMed  Google Scholar 

  90. Davis NF, Mooney R, Piterina AV, Callanan A, McGuire BB, Flood HD, et al. Construction and evaluation of urinary bladder bioreactor for urologic tissue-engineering purposes. Urology. 2011;78(4):954–60.

    Article  PubMed  Google Scholar 

  91. Heher P, Maleiner B, Pruller J, Teuschl AH, Kollmitzer J, Monforte X, et al. A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain. Acta Biomater. 2015;24:251–65.

    Article  CAS  PubMed  Google Scholar 

  92. Massai D, Cerino G, Gallo D, Pennella F, Deriu MA, Rodriguez A, et al. Bioreactors as engineering support to treat cardiac muscle and vascular disease. J Healthcare Eng. 2013;4(3):329–70.

    Article  Google Scholar 

  93. Ahn H, Ju YM, Takahashi H, Williams DF, Yoo JJ, Lee SJ, et al. Engineered small diameter vascular grafts by combining cell sheet engineering and electrospinning technology. Acta Biomater. 2015;16:14–22.

    Article  CAS  PubMed  Google Scholar 

  94. Depprich R, Handschel J, Wiesmann HP, Jasche-Meyer J, Meyer U. Use of bioreactors in maxillofacial tissue engineering. Br J Oral Maxillofac Surg. 2008;46(5):349–54.

    Article  PubMed  Google Scholar 

  95. Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials. 2012;33(26):6020–41.

    Article  CAS  PubMed  Google Scholar 

  96. Shafiee A, Atala A. Printing Technologies for Medical Applications. Trends Mol Med. 2016;22(3):254–65.

    Article  PubMed  Google Scholar 

  97. Soliman Y, Feibus AH, Baum N. 3D printing and its urologic applications. Rev Urol. 2015;17(1):20–4.

    PubMed  PubMed Central  Google Scholar 

  98. Atala A, Kasper FK, Mikos AG. Engineering complex tissues. Sci Transl Med. 2012;4(160):160rv12.

    Article  PubMed  CAS  Google Scholar 

  99. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773–85.

    Article  CAS  PubMed  Google Scholar 

  100. Ozbolat IT, Peng W, Ozbolat V. Application areas of 3D bioprinting. Drug Discov Today. 2016;21(8):1257–71.

    Article  CAS  PubMed  Google Scholar 

  101. Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34(3):312–9.

    Article  CAS  PubMed  Google Scholar 

  102. Nam SY, Ricles LM, Suggs LJ, Emelianov SY. Imaging strategies for tissue engineering applications. Tissue Eng Part B Rev. 2015;21(1):88–102.

    Article  PubMed  Google Scholar 

  103. Appel AA, Anastasio MA, Larson JC, Brey EM. Imaging challenges in biomaterials and tissue engineering. Biomaterials. 2013;34(28):6615–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Huang X, Zhang F, Wang Y, Sun X, Choi KY, Liu D, et al. Design considerations of iron-based nanoclusters for noninvasive tracking of mesenchymal stem cell homing. ACS Nano. 2014;8(5):4403–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hatzikirou H, Deutsch A. Cellular automata as microscopic models of cell migration in heterogeneous environments. Curr Top Dev Biol. 2008;81:401–34.

    Article  PubMed  Google Scholar 

  106. Kumar SP, Feidler JC. BioSPICE: a computational infrastructure for integrative biology. OMICS. 2003;7(3):225.

    Article  CAS  PubMed  Google Scholar 

  107. Hunt CJ. Cryopreservation of human stem cells for clinical application: a review. Transfusion Med Hemother. 2011;38(2):107–23.

    Article  Google Scholar 

  108. Wang Z, Qin TW. Review: vitreous cryopreservation of tissue-engineered compositions for tissue repair. J Med Biol Eng. 2013;33(2):125–31.

    Article  Google Scholar 

  109. Donnez J, Dolmans MM, Pellicer A, Diaz-Garcia C, Sanchez Serrano M, Schmidt KT, et al. Restoration of ovarian activity and pregnancy after transplantation of cryopreserved ovarian tissue: a review of 60 cases of reimplantation. Fertil Steril. 2013;99(6):1503–13.

    Article  PubMed  Google Scholar 

  110. Sadri-Ardekani H, McLean TW, Kogan S, Sirintrapun J, Crowell K, Yousif MQ, et al. Experimental testicular tissue banking to generate spermatogenesis in the future: a multidisciplinary team approach. Methods. 2016;99:120–7.

    Article  CAS  PubMed  Google Scholar 

  111. Raya-Rivera A, Esquiliano DR, Yoo JJ, Lopez-Bayghen E, Soker S, Atala A. Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet. 2011;377(9772):1175–82.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Rama P, Matuska S, Paganoni G, Spinelli A, De Luca M, Pellegrini G. Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med. 2010;363(2):147–55.

    Article  CAS  PubMed  Google Scholar 

  113. Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 2012;379(9819):895–904.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Bolli R, Chugh AR, D'Amario D, Loughran JH, Stoddard MF, Ikram S, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet. 2011;378(9806):1847–57.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Dimmeler S, Ding S, Rando TA, Trounson A. Translational strategies and challenges in regenerative medicine. Nat Med. 2014;20(8):814–21.

    Article  CAS  PubMed  Google Scholar 

  116. Badylak SF, Weiss DJ, Caplan A, Macchiarini P. Engineered whole organs and complex tissues. Lancet. 2012;379(9819):943–52.

    Article  PubMed  Google Scholar 

  117. Sicari BM, Rubin JP, Dearth CL, Wolf MT, Ambrosio F, Boninger M, et al. An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci Transl Med. 2014;6(234):234ra58.

    Article  PubMed  CAS  Google Scholar 

  118. Kang SB, Olson JL, Atala A, Yoo JJ. Functional recovery of completely denervated muscle: implications for innervation of tissue-engineered muscle. Tissue Eng Part A. 2012;18(17–18):1912–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ko IK, Lee BK, Lee SJ, Andersson KE, Atala A, Yoo JJ. The effect of in vitro formation of acetylcholine receptor (AChR) clusters in engineered muscle fibers on subsequent innervation of constructs in vivo. Biomaterials. 2013;34(13):3246–55.

    Article  CAS  PubMed  Google Scholar 

  120. Morimoto Y, Kato-Negishi M, Onoe H, Takeuchi S. Three-dimensional neuron-muscle constructs with neuromuscular junctions. Biomaterials. 2013;34(37):9413–9.

    Article  CAS  PubMed  Google Scholar 

  121. Hunsberger J, Harrysson O, Shirwaiker R, Starly B, Wysk R, Cohen P, et al. Manufacturing road map for tissue engineering and regenerative medicine technologies. Stem Cells Transl Med. 2015;4(2):130–5.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Margaret vanSchaayk for editorial assistance with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Hyun Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kim, J.H., Yoo, J.J. (2018). Current Developments and Future Perspectives of Tissue Engineering and Regenerative Medicine. In: Kim, B. (eds) Clinical Regenerative Medicine in Urology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2723-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2723-9_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2722-2

  • Online ISBN: 978-981-10-2723-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics