Urethral Sphincter: Stress Urinary Incontinence

  • Eun Sang YooEmail author
  • Jun Nyung Lee


Urinary incontinence is described as the involuntary loss of urine and is a common condition in middle-aged and elderly women and men [1]. Urinary incontinence can be generally classified into the following three: (1) stress urinary incontinence, (2) urge urinary incontinence, and (3) a mixed form of (1) and (2) [1]. Stress urinary incontinence occurs when increased intra-abdominal pressure causes bladder pressure to exceed urethral pressure, resulting in involuntary leakage of urine. In stress urinary incontinence, urine leakage can be observed during coughing, sneezing, laughing, lifting, and exercising. Classically stress urinary incontinence often relies on distinguishing between intrinsic sphincter deficiency and urethral malposition or hypermobility [2]. However, this is controversial as each component may contribute in varying proportion to the occurrence of stress urinary incontinence.


  1. 1.
    Abrams P, Cardozo L, Fall M, Griffiths D, Rosier P, Ulmsten U, et al. The standardisation of terminology of lower urinary tract function: report from the Standardisation Sub-committee of the International Continence Society. Neurourol Urodyn. 2002;21(2):167–78.PubMedCrossRefGoogle Scholar
  2. 2.
    Kalejaiye O, Vij M, Drake MJ. Classification of stress urinary incontinence. World J Urol. 2015;33(9):1215–20.PubMedCrossRefGoogle Scholar
  3. 3.
    Norton P, Brubaker L. Urinary incontinence in women. Lancet. 2006;367(9504):57–67.PubMedCrossRefGoogle Scholar
  4. 4.
    Hunskaar S, Lose G, Sykes D, Voss S. The prevalence of urinary incontinence in women in four European countries. BJU Int. 2004;93(3):324–30.PubMedCrossRefGoogle Scholar
  5. 5.
    Carlson KV, Nitti VW. Prevention and management of incontinence following radical prostatectomy. Urol Clin North Am. 2001;28(3):595–612.PubMedCrossRefGoogle Scholar
  6. 6.
    Strohbehn K, Lauria MR. Risk of urinary incontinence after childbirth: a 10-year prospective cohort study. Obstet Gynecol. 2007;109(1):202; author reply-3.PubMedCrossRefGoogle Scholar
  7. 7.
    Cundiff GW. The pathophysiology of stress urinary incontinence: a historical perspective. Rev Urol. 2004;6(Suppl 3):S10–8.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Petros PEP, Ulmsten U. Urethral pressure increase on effort originates from within the urethra, and continence from musculovaginal closure. Neurourol Urodyn. 1995;14(4):337–50.PubMedCrossRefGoogle Scholar
  9. 9.
    Kayigil O, Ahmed SI, Metin A. The coexistence of intrinsic sphincter deficiency with type II stress incontinence. J Urol. 1999;162(4):1365–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Radomski SB. Practical evaluation of post-prostatectomy incontinence. Cuaj-Can Urol Assoc. 2013;7(9-10):S186–S8.CrossRefGoogle Scholar
  11. 11.
    Dalkin BL, Wessells H, Cui HY. A national survey of urinary and health related quality of life outcomes in men with an artificial urinary sphincter for post-radical prostatectomy incontinence. J Urol. 2003;169(1):237–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Harding CK, Thorpe AC. The surgical treatment of female stress urinary incontinence. Indian J Urol. 2010;26(2):257–62.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Mischinger J, Amend B, Reisenauer C, Bedke J, Naumann G, Germann M, et al. Different surgical approaches for stress urinary incontinence in women. Minerva Ginecol. 2013;65(1):21–8.PubMedGoogle Scholar
  14. 14.
    Hakim L, De Ridder D, Van der Aa F. Slings for urinary incontinence and the application of cell-based therapy. Adv Drug Deliv Rev. 2015;82–83:22–30.PubMedCrossRefGoogle Scholar
  15. 15.
    Koski ME, Enemchukwu EA, Padmanabhan P, Kaufman MR, Scarpero HM, Dmochowski RR. Safety and efficacy of sling for persistent stress urinary incontinence after bulking injection. Urology. 2011;77(5):1076–80.PubMedCrossRefGoogle Scholar
  16. 16.
    Nilsson CG, Palva K, Aarnio R, Morcos E, Falconer C. Seventeen years’ follow-up of the tension-free vaginal tape procedure for female stress urinary incontinence. Int Urogynecol J. 2013;24(8):1265–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Phe V, Benadiba S, Roupret M, Granger B, Richard F, Chartier-Kastler E. Long-term functional outcomes after artificial urinary sphincter implantation in women with stress urinary incontinence. BJU Int. 2014;113(6):961–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Stanford EJ, Paraiso MF. A comprehensive review of suburethral sling procedure complications. J Minim Invasive Gynecol. 2008;15(2):132–45.PubMedCrossRefGoogle Scholar
  19. 19.
    Osborn DJ, Dmochowski RR, Harris CJ, Danford JJ, Kaufman MR, Mock S, et al. Analysis of patient and technical factors associated with midurethral sling mesh exposure and perforation. Int J Urol. 2014;21(11):1167–70.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Mohr S, Siegenthaler M, Mueller MD, Kuhn A. Bulking agents: an analysis of 500 cases and review of the literature. Int Urogynecol J. 2013;24(2):241–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78(12):7634–8.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Lin CS, Lue TF. Stem cell therapy for stress urinary incontinence: a critical review. Stem Cells Dev. 2012;21(6):834–43.PubMedCrossRefGoogle Scholar
  24. 24.
    Hart ML, Izeta A, Herrera-Imbroda B, Amend B, Brinchmann JE. Cell therapy for stress urinary incontinence. Tissue Eng B Rev. 2015;21(4):365–76.CrossRefGoogle Scholar
  25. 25.
    Tran C, Damaser MS. The potential role of stem cells in the treatment of urinary incontinence. Ther Adv Urol. 2015;7(1):22–40.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Badra S, Andersson KE, Dean A, Mourad S, Williams JK. Long-term structural and functional effects of autologous muscle precursor cell therapy in a nonhuman primate model of urinary sphincter deficiency. J Urol. 2013;190(5):1938–45.PubMedCrossRefGoogle Scholar
  27. 27.
    Klauser A, Frauscher F, Strasser H, Helweg G, Kolle D, Strohmeyer D, et al. Age-related rhabdosphincter function in female urinary stress incontinence: assessment of intraurethral sonography. J Ultrasound Med. 2004;23(5):631–7; quiz 8-9.PubMedCrossRefGoogle Scholar
  28. 28.
    Goldman HB, Sievert KD, Damaser MS. Will we ever use stem cells for the treatment of SUI?: ICI-RS 2011. Neurourol Urodyn. 2012;31(3):386–9.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Vaegler M, Lenis AT, Daum L, Amend B, Stenzl A, Toomey P, et al. Stem cell therapy for voiding and erectile dysfunction. Nat Rev Urol. 2012;9(8):435–47.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Kim JH, Lee SR, Song YS, Lee HJ. Stem cell therapy in bladder dysfunction: where are we? And where do we have to go? BioMed Res Int. 2013;2013:1–10.Google Scholar
  31. 31.
    Godfrey KJ, Mathew B, Bulman JC, Shah O, Clement S, Gallicano GI. Stem cell-based treatments for type 1 diabetes mellitus: bone marrow, embryonic, hepatic, pancreatic and induced pluripotent stem cells. Diabet Med. 2012;29(1):14–23.PubMedCrossRefGoogle Scholar
  32. 32.
    Singla DK, Abdelli LS. Embryonic stem cells and released factors stimulate c-kit(+)/FLK-1(+) progenitor cells and promote neovascularization in doxorubicin-induced cardiomyopathy. Cell Transplant. 2015;24(6):1043–52.PubMedCrossRefGoogle Scholar
  33. 33.
    Anker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA, Claas FH, Willemze R, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood. 2003;102(4):1548–9.Google Scholar
  34. 34.
    Moorefield EC, McKee EE, Solchaga L, Orlando G, Yoo JJ, Walker S, et al. Cloned, CD117 selected human amniotic fluid stem cells are capable of modulating the immune response. PLoS One. 2011;6(10):e26535.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.PubMedCrossRefGoogle Scholar
  36. 36.
    Morris SA, Daley GQ. A blueprint for engineering cell fate: current technologies to reprogram cell identity. Cell Res. 2013;23(1):33–48.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Wang HJ, Chuang YC, Chancellor MB. Development of cellular therapy for the treatment of stress urinary incontinence. Int Urogynecol J. 2011;22(9):1075–83.PubMedCrossRefGoogle Scholar
  38. 38.
    Friedenstein AJ, Deriglasova UF, Kulagina NN, Panasuk AF, Rudakowa SF, Luria EA, et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol. 1974;2(2):83–92.PubMedGoogle Scholar
  39. 39.
    Ding DC, Shyu WC, Lin SZ. Mesenchymal stem cells. Cell Transplant. 2011;20(1):5–14.PubMedCrossRefGoogle Scholar
  40. 40.
    Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. 2001;105(3):369–77.PubMedCrossRefGoogle Scholar
  41. 41.
    Lavker RM, Sun TT, Oshima H, Barrandon Y, Akiyama M, Ferraris C, et al. Hair follicle stem cells. J Investig Dermatol Symp Proc. 2003;8(1):28–38.PubMedCrossRefGoogle Scholar
  42. 42.
    Patel AN, Park E, Kuzman M, Benetti F, Silva FJ, Allickson JG. Multipotent menstrual blood stromal stem cells: isolation, characterization, and differentiation. Cell Transplant. 2008;17(3):303–11.PubMedCrossRefGoogle Scholar
  43. 43.
    Zhang Y, McNeill E, Tian H, Soker S, Andersson KE, Yoo JJ, et al. Urine derived cells are a potential source for urological tissue reconstruction. J Urol. 2008;180(5):2226–33.PubMedCrossRefGoogle Scholar
  44. 44.
    Wu S, Wang Z, Bharadwaj S, Hodges SJ, Atala A, Zhang Y. Implantation of autologous urine derived stem cells expressing vascular endothelial growth factor for potential use in genitourinary reconstruction. J Urol. 2011;186(2):640–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Bharadwaj S, Liu GH, Shi YG, Markert C, Andersson KE, Atala A, et al. Characterization of urine-derived stem cells obtained from upper urinary tract for use in cell-based urological tissue engineering. Tissue Eng A. 2011;17(15-16):2123–32.CrossRefGoogle Scholar
  46. 46.
    Lang R, Liu GH, Shi YG, Bharadwaj S, Leng XY, Zhou XB, et al. Self-renewal and differentiation capacity of urine-derived stem cells after urine preservation for 24 hours. Plos One. 2013;8(1):e53980.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Liu GH, Pareta RA, Wu RP, Shi YG, Zhou XB, Liu H, et al. Skeletal myogenic differentiation of urine-derived stem cells and angiogenesis using microbeads loaded with growth factors. Biomaterials. 2013;34(4):1311–26.PubMedCrossRefGoogle Scholar
  48. 48.
    Zhang Y, Atala A. Urothelial cell culture. Methods Mol Biol. 2013;1037:27–43.PubMedCrossRefGoogle Scholar
  49. 49.
    Bharadwaj S, Liu G, Shi Y, Wu R, Yang B, He T, et al. Multipotential differentiation of human urine-derived stem cells: potential for therapeutic applications in urology. Stem Cells. 2013;31(9):1840–56.PubMedCrossRefGoogle Scholar
  50. 50.
    Sohni A, Verfaillie CM. Mesenchymal stem cells migration homing and tracking. Stem Cells Int. 2013;2013:130763.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Wynn RF, Hart CA, Corradi-Perini C, O’Neill L, Evans CA, Wraith JE, et al. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood. 2004;104(9):2643–5.PubMedCrossRefGoogle Scholar
  52. 52.
    Honczarenko M, Le Y, Swierkowski M, Ghiran I, Glodek AM, Silberstein LE. Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells. 2006;24(4):1030–41.PubMedCrossRefGoogle Scholar
  53. 53.
    Docheva D, Popov C, Mutschler W, Schieker M. Human mesenchymal stem cells in contact with their environment: surface characteristics and the integrin system. J Cell Mol Med. 2007;11(1):21–38.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Ruster B, Gottig S, Ludwig RJ, Bistrian R, Muller S, Seifried E, et al. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood. 2006;108(12):3938–44.PubMedCrossRefGoogle Scholar
  55. 55.
    Woo LL, Hijaz A, Kuang M, Penn MS, Damaser MS, Rackley RR. Over expression of stem cell homing cytokines in urogenital organs following vaginal distention. J Urol. 2007;177(4):1568–72.PubMedCrossRefGoogle Scholar
  56. 56.
    Wood HM, Kuang M, Woo L, Hijaz A, Butler RS, Penn M, et al. Cytokine expression after vaginal distention of different durations in virgin Sprague-Dawley rats. J Urol. 2008;180(2):753–9.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Lenis AT, Kuang M, Woo LL, Hijaz A, Penn MS, Butler RS, et al. Impact of parturition on chemokine homing factor expression in the vaginal distention model of stress urinary incontinence. J Urol. 2013;189(4):1588–94.PubMedCrossRefGoogle Scholar
  58. 58.
    Cruz M, Dissaranan C, Cotleur A, Kiedrowski M, Penn M, Damaser M. Pelvic organ distribution of mesenchymal stem cells injected intravenously after simulated childbirth injury in female rats. Obstet Gynecol Int. 2012;2012:612946.PubMedCrossRefGoogle Scholar
  59. 59.
    Dissaranan C, Cruz MA, Kiedrowski MJ, Balog BM, Gill BC, Penn MS, et al. Rat mesenchymal stem cell secretome promotes elastogenesis and facilitates recovery from simulated childbirth injury. Cell Transplant. 2014;23(11):1395–406.PubMedCrossRefGoogle Scholar
  60. 60.
    Woo LL, Tanaka ST, Anumanthan G, Pope JCT, Thomas JC, Adams MC, et al. Mesenchymal stem cell recruitment and improved bladder function after bladder outlet obstruction: preliminary data. J Urol. 2011;185(3):1132–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Rombouts WJC, Ploemacher RE. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia. 2003;17(1):160–70.PubMedCrossRefGoogle Scholar
  62. 62.
    De Becker A, Van Hummelen P, Bakkus M, Broek IV, De Wever J, De Waele M, et al. Migration of culture-expanded human mesenchymal stem cells through bone marrow endothelium is regulated by matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-3. Haematol-Hematol J. 2007;92(4):440–9.CrossRefGoogle Scholar
  63. 63.
    Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue HS, Savitz SI, et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev. 2009;18(5):683–91.PubMedCrossRefGoogle Scholar
  64. 64.
    Ghionzoli M, Cananzi M, Zani A, Rossi CA, Leon FF, Pierro A, et al. Amniotic fluid stem cell migration after intraperitoneal injection in pup rats: implication for therapy. Pediatr Surg Int. 2010;26(1):79–84.PubMedCrossRefGoogle Scholar
  65. 65.
    Fu Q, Song XF, Liao GL, Deng CL, Cui L. Myoblasts differentiated from adipose-derived stem cells to treat stress urinary incontinence. Urology. 2010;75(3):718–23.PubMedCrossRefGoogle Scholar
  66. 66.
    Kim SO, Na HS, Kwon D, Joo SY, Kim HS, Ahn Y. Bone-marrow-derived mesenchymal stem cell transplantation enhances closing pressure and leak point pressure in a female urinary incontinence rat model. Urol Int. 2011;86(1):110–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Lin GT, Wang GF, Banie L, Ning HX, Shindel AW, Fandel TM, et al. Treatment of stress urinary incontinence with adipose tissue-derived stem cells. Cytotherapy. 2010;12(1):88–95.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Wu R, Liu G, Bharadwaj S, Zhang Y. Isolation and myogenic differentiation of mesenchymal stem cells for urologic tissue engineering. Methods Mol Biol. 2013;1001:65–80.PubMedCrossRefGoogle Scholar
  69. 69.
    Carvalho MM, Teixeira FG, Reis RL, Sousa N, Salgado AJ. Mesenchymal stem cells in the umbilical cord: phenotypic characterization, secretome and applications in central nervous system regenerative medicine. Curr Stem Cell Res Ther. 2011;6(3):221–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98(5):1076–84.PubMedCrossRefGoogle Scholar
  71. 71.
    Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol. 2000;28(8):875–84.PubMedCrossRefGoogle Scholar
  72. 72.
    Stastna M, Van Eyk JE. Secreted proteins as a fundamental source for biomarker discovery. Proteomics. 2012;12(4–5):722–35.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Ryan JM, Barry FP, Murphy JM, Mahon BP. Mesenchymal stem cells avoid allogeneic rejection. J Inflamm (Lond). 2005;2:8.CrossRefGoogle Scholar
  74. 74.
    Duijvestein M, van den Brink GR, Hommes DW. Stem cells as potential novel therapeutic strategy for inflammatory bowel disease. J Crohns Colitis. 2008;2(2):99–106.PubMedCrossRefGoogle Scholar
  75. 75.
    Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009;54(24):2277–86.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Telukuntla KS, Suncion VY, Schulman IH, Hare JM. The advancing field of cell-based therapy: insights and lessons from clinical trials. J Am Heart Assoc. 2013;2(5):e000338.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Shabbir A, Zisa D, Suzuki G, Lee T. Heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells: a noninvasive therapeutic regimen. Am J Physiol Heart Circ Physiol. 2009;296(6):H1888–97.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Timmers L, Lim SK, Hoefer IE, Arslan F, Lai RC, van Oorschot AA, et al. Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Res. 2011;6(3):206–14.PubMedCrossRefGoogle Scholar
  79. 79.
    Song YS, Lee HJ, Doo SH, Lee SJ, Lim I, Chang KT, et al. Mesenchymal stem cells overexpressing hepatocyte growth factor (HGF) inhibit collagen deposit and improve bladder function in rat model of bladder outlet obstruction. Cell Transplant. 2012;21(8):1641–50.PubMedCrossRefGoogle Scholar
  80. 80.
    Lin AS, Carrier S, Morgan DM, Lue TF. Effect of simulated birth trauma on the urinary continence mechanism in the rat. Urology. 1998;52(1):143–51.PubMedCrossRefGoogle Scholar
  81. 81.
    Pan HQ, Kerns JM, Lin DL, Liu S, Esparza N, Damaser MS. Increased duration of simulated childbirth injuries results in increased time to recovery. Am J Physiol Regul Integr Comp Physiol. 2007;292(4):R1738–44.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Woo LL, Hijaz A, Pan HQ, Kuang M, Rackley RR, Damaser MS. Simulated childbirth injuries in an inbred rat strain. Neurourol Urodyn. 2009;28(4):356–61.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Burdzinska A, Crayton R, Dybowski B, Koperski L, Idziak M, Fabisiak M, et al. Urethral distension as a novel method to simulate sphincter insufficiency in the porcine animal model. Int J Urol. 2012;19(7):676–82.PubMedCrossRefGoogle Scholar
  84. 84.
    Kerns JM, Damaser MS, Kane JM, Sakamoto K, Benson JT, Shott S, et al. Effects of pudendal nerve injury in the female rat. Neurourol Urodyn. 2000;19(1):53–69.PubMedCrossRefGoogle Scholar
  85. 85.
    Pan HQ, Lin DL, Strauch C, Butler RS, Monnier VM, Daneshgari F, et al. Pudendal nerve injury reduces urethral outlet resistance in diabetic rats. Am J Physiol Ren Physiol. 2010;299(6):F1443–50.CrossRefGoogle Scholar
  86. 86.
    Castiglione F, Bergamini A, Bettiga A, Bivalacqua TJ, Benigni F, Strittmatter F, et al. Perioperative betamethasone treatment reduces signs of bladder dysfunction in a rat model for neurapraxia in female urogenital surgery. Eur Urol. 2012;62(6):1076–85.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Salcedo L, Mayorga M, Damaser M, Balog B, Butler R, Penn M, et al. Mesenchymal stem cells can improve anal pressures after anal sphincter injury. Stem Cell Res. 2013;10(1):95–102.PubMedCrossRefGoogle Scholar
  88. 88.
    Song QX, Balog BM, Kerns J, Li Lin D, Sun YH, Damaser MS, et al. Long-term effects of simulated childbirth injury on function and innervation of the urethra. Neurourol Urodyn. 2015;34(4):381–6.PubMedCrossRefGoogle Scholar
  89. 89.
    Kato H, Igawa Y, Khaleque MA, Nishizawa O. Bladder dysfunction after proximal urethrolysis in female dogs. Int J Urol. 1999;6(1):33–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Rodriguez LV, Chen S, Jack GS, de Almeida F, Lee KW, Zhang R. New objective measures to quantify stress urinary incontinence in a novel durable animal model of intrinsic sphincter deficiency. Am J Physiol Regul Integr Comp Physiol. 2005;288(5):R1332–R8.PubMedCrossRefGoogle Scholar
  91. 91.
    Skaff M, Pinto E, Leite KR, Almeida FG. Development of a rabbit’s urethral sphincter deficiency animal model for anatomical-functional evaluation. Int Braz J Urol. 2012;38(1):17–24.PubMedCrossRefGoogle Scholar
  92. 92.
    Kinebuchi Y, Aizawa N, Imamura T, Ishizuka O, Igawa Y, Nishizawa O. Autologous bone-marrow-derived mesenchymal stem cell transplantation into injured rat urethral sphincter. Int J Urol. 2010;17(4):359–68.PubMedCrossRefGoogle Scholar
  93. 93.
    Chermansky CJ, Tarin T, Kwon DD, Jankowski RJ, Cannon TW, de Groat WC, et al. Intraurethral muscle-derived cell injections increase leak point pressure in a rat model of intrinsic sphincter deficiency. Urology. 2004;63(4):780–5.PubMedCrossRefGoogle Scholar
  94. 94.
    Lim JJ, Jang JB, Kim JY, Moon SH, Lee CN, Lee KJ. Human umbilical cord blood mononuclear cell transplantation in rats with intrinsic sphincter deficiency. J Korean Med Sci. 2010;25(5):663–70.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Chermansky CJ, Cannon TW, Torimoto K, Fraser MO, Yoshimura N, de Groat WC, et al. A model of intrinsic sphincteric deficiency in the rat: electrocauterization. Neurourol Urodyn. 2004;23(2):166–71.PubMedCrossRefGoogle Scholar
  96. 96.
    Yiou R, Yoo JJ, Atala A. Restoration of functional motor units in a rat model of sphincter injury by muscle precursor cell autografts. Transplantation. 2003;76(7):1053–60.PubMedCrossRefGoogle Scholar
  97. 97.
    Zutshi M, Salcedo LB, Zaszczurynski PJ, Hull TL, Butler RS, Damaser MS. Effects of sphincterotomy and pudendal nerve transection on the anal sphincter in a rat model. Dis Colon Rectum. 2009;52(7):1321–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Praud C, Sebe P, Bierinx AS, Sebille A. Improvement of urethral sphincter deficiency in female rats following autologous skeletal muscle myoblasts grafting. Cell Transplant. 2007;16(7):741–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Eberli D, Andersson KE, Yoo JJ, Atala A. A canine model of irreversible urethral sphincter insufficiency. BJU Int. 2009;103(2):248–53.PubMedCrossRefGoogle Scholar
  100. 100.
    Kefer JC, Liu G, Daneshgari F. Pubo-urethral ligament injury causes long-term stress urinary incontinence in female rats: an animal model of the integral theory. J Urol. 2009;181(1):397–400.PubMedCrossRefGoogle Scholar
  101. 101.
    Kamo I, Torimoto K, Chancellor MB, de Groat WC, Yoshimura N. Urethral closure mechanisms under sneeze-induced stress condition in rats: a new animal model for evaluation of stress urinary incontinence. Am J Physiol Regul Integr Comp Physiol. 2003;285(2):R356–65.PubMedCrossRefGoogle Scholar
  102. 102.
    Peng CW, Chen JJ, Chang HY, de Groat WC, Cheng CL. External urethral sphincter activity in a rat model of pudendal nerve injury. Neurourol Urodyn. 2006;25(4):388–96.PubMedCrossRefGoogle Scholar
  103. 103.
    Badra S, Andersson KE, Dean A, Mourad S, Williams JK. A nonhuman primate model of stable urinary sphincter deficiency. J Urol. 2013;189(5):1967–74.PubMedCrossRefGoogle Scholar
  104. 104.
    Furuta A, Jankowski RJ, Pruchnic R, Egawa S, Yoshimura N, Chancellor MB. Physiological effects of human muscle-derived stem cell implantation on urethral smooth muscle function. Int Urogynecol J. 2008;19(9):1229–34.CrossRefGoogle Scholar
  105. 105.
    Xu Y, Song YF, Lin ZX. Transplantation of muscle-derived stem cells plus biodegradable fibrin glue restores the urethral sphincter in a pudendal nerve-transected rat model. Braz J Med Biol Res. 2010;43(11):1076–83.PubMedCrossRefGoogle Scholar
  106. 106.
    Zhao WM, Zhang C, Jin CJ, Zhang ZJ, Kong DL, Xu WH, et al. Periurethral injection of autologous adipose-derived stem cells with controlled-release nerve growth factor for the treatment of stress urinary incontinence in a rat model. Eur Urol. 2011;59(1):155–63.PubMedCrossRefGoogle Scholar
  107. 107.
    Wu GZ, Song YF, Zheng X, Jiang ZQ. Adipose-derived stromal cell transplantation for treatment of stress urinary incontinence. Tissue Cell. 2011;43(4):246–53.PubMedCrossRefGoogle Scholar
  108. 108.
    Corcos J, Loutochin O, Campeau L, Eliopoulos N, Bouchentouf M, Blok B, et al. Bone marrow mesenchymal stromal cell therapy for external urethral sphincter restoration in a rat model of stress urinary incontinence. Neurourol Urodyn. 2011;30(3):447–55.PubMedCrossRefGoogle Scholar
  109. 109.
    Du XW, Wu HL, Zhu YF, Hu JB, Jin F, Lv RP, et al. Experimental study of therapy of bone marrow mesenchymal stem cells or muscle-like cells/calcium alginate composite gel for the treatment of stress urinary incontinence. Neurourol Urodyn. 2013;32(3):281–6.PubMedCrossRefGoogle Scholar
  110. 110.
    Chun SY, Kwon JB, Chae SY, Lee JK, Bae JS, Kim BS, et al. Combined injection of three different lineages of early-differentiating human amniotic fluid-derived cells restores urethral sphincter function in urinary incontinence. BJU Int. 2014;114(5):770–83.PubMedCrossRefGoogle Scholar
  111. 111.
    Joyce N, Annett G, Wirthlin L, Olson S, Bauer G, Nolta JA. Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med. 2010;5(6):933–46.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Hardy SA, Maltman DJ, Przyborski SA. Mesenchymal stem cells as mediators of neural differentiation. Curr Stem Cell Res Ther. 2008;3(1):43–52.PubMedCrossRefGoogle Scholar
  113. 113.
    Li GY, Zhou F, Gong YQ, Cui WS, Yuan YM, Song WD, et al. Activation of VEGF and ERK1/2 and improvement of urethral function by adipose-derived stem cells in a rat stress urinary incontinence model. Urology. 2012;80(4):953–e1.PubMedGoogle Scholar
  114. 114.
    Obinata D, Matsumoto T, Ikado Y, Sakuma T, Kano K, Fukuda N, et al. Transplantation of mature adipocyte-derived dedifferentiated fat (DFAT) cells improves urethral sphincter contractility in a rat model. Int J Urol. 2011;18(12):827–34.PubMedCrossRefGoogle Scholar
  115. 115.
    Ohta Y, Takenaga M, Tokura Y, Hamaguchi A, Matsumoto T, Kano K, et al. Mature adipocyte-derived cells, dedifferentiated fat cells (DFAT), promoted functional recovery from spinal cord injury-induced motor dysfunction in rats. Cell Transplant. 2008;17(8):877–86.PubMedCrossRefGoogle Scholar
  116. 116.
    Kwon D, Kim Y, Pruchnic R, Jankowski R, Usiene I, De Miguel F, et al. Periurethral cellular injection: comparison of muscle-derived progenitor cells and fibroblasts with regard to efficacy and tissue contractility in an animal model of stress urinary incontinence. Urology. 2006;68(2):449–54.PubMedCrossRefGoogle Scholar
  117. 117.
    Mitterberger M, Pinggera GM, Marksteiner R, Margreiter E, Plattner R, Klima G, et al. Functional and histological changes after myoblast injections in the porcine rhabdosphincter. Eur Urol. 2007;52(6):1736–43.PubMedCrossRefGoogle Scholar
  118. 118.
    Yiou R, Dreyfus P, Chopin DK, Abbou CC, Lefaucheur JP. Muscle precursor cell autografting in a murine model of urethral sphincter injury. BJU Int. 2002;89(3):298–302.PubMedCrossRefGoogle Scholar
  119. 119.
    Kim YT, Kim DK, Jankowski RJ, Pruchnic R, Usiene I, de Miguel F, et al. Human muscle-derived cell injection in a rat model of stress urinary incontinence. Muscle Nerve. 2007;36(3):391–3.PubMedCrossRefGoogle Scholar
  120. 120.
    Kim BS, Chun SY, Lee JK, Lim HJ, Bae JS, Chung HY, et al. Human amniotic fluid stem cell injection therapy for urethral sphincter regeneration in an animal model. BMC Med. 2012;10:94.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Bandyopadhyay B, Thakur A, Dave V, Viswanathan C, Ghosh D. A non-invasive method to evaluate the efficacy of human myoblast in botulinum-A toxin induced stress urinary incontinence model in rats. Urol J. 2013;10(4):1126–34.Google Scholar
  122. 122.
    Aref-Adib M, Lamb BW, Lee HB, Akinnawo E, Raza MM, Hughes A, et al. Stem cell therapy for stress urinary incontinence: a systematic review in human subjects. Arch Gynecol Obstet. 2013;288(6):1213–21.PubMedCrossRefGoogle Scholar
  123. 123.
    Mitterberger M, Marksteiner R, Margreiter E, Pinggera GM, Colleselli D, Frauscher F, et al. Autologous myoblasts and fibroblasts for female stress incontinence: a 1-year follow-up in 123 patients. BJU Int. 2007;100(5):1081–5.PubMedGoogle Scholar
  124. 124.
    Mitterberger M, Marksteiner R, Margreiter E, Pinggera GM, Frauscher F, Ulmer H, et al. Myoblast and fibroblast therapy for post-prostatectomy urinary incontinence: 1-year followup of 63 patients. J Urol. 2008;179(1):226–31.PubMedCrossRefGoogle Scholar
  125. 125.
    Mitterberger M, Pinggera GM, Marksteiner R, Margreiter E, Fussenegger M, Frauscher F, et al. Adult stem cell therapy of female stress urinary incontinence. Eur Urol. 2008;53(1):169–75.PubMedCrossRefGoogle Scholar
  126. 126.
    Carr LK, Steele D, Steele S, Wagner D, Pruchnic R, Jankowski R, et al. 1-year follow-up of autologous muscle-derived stem cell injection pilot study to treat stress urinary incontinence. Int Urogynecol J Pelvic Floor Dysfunct. 2008;19(6):881–3.PubMedCrossRefGoogle Scholar
  127. 127.
    Sebe P, Doucet C, Cornu JN, Ciofu C, Costa P, de Medina SG, et al. Intrasphincteric injections of autologous muscular cells in women with refractory stress urinary incontinence: a prospective study. Int Urogynecol J. 2011;22(2):183–9.PubMedCrossRefGoogle Scholar
  128. 128.
    Cornu JN, Lizee D, Pinset C, Haab F. Long-term follow-up after regenerative therapy of the urethral sphincter for female stress urinary incontinence. Eur Urol. 2014;65(1):256–8.PubMedCrossRefGoogle Scholar
  129. 129.
    Blaganje M, Lukanovic A. Ultrasound-guided autologous myoblast injections into the extrinsic urethral sphincter: tissue engineering for the treatment of stress urinary incontinence. Int Urogynecol J. 2013;24(4):533–5.PubMedCrossRefGoogle Scholar
  130. 130.
    Gerullis H, Eimer C, Georgas E, Homburger M, El-Baz AG, Wishahi M, et al. Muscle-derived cells for treatment of iatrogenic sphincter damage and urinary incontinence in men. Sci World J. 2012;2012:1–6.CrossRefGoogle Scholar
  131. 131.
    Stangel-Wojcikiewicz K, Jarocha D, Piwowar M, Jach R, Uhl T, Basta A, et al. Autologous muscle-derived cells for the treatment of female stress urinary incontinence: a 2-year follow-up of a polish investigation. Neurourol Urodyn. 2014;33(3):324–30.PubMedCrossRefGoogle Scholar
  132. 132.
    Carr LK, Robert M, Kultgen PL, Herschorn S, Birch C, Murphy M, et al. Autologous muscle derived cell therapy for stress urinary incontinence: a prospective, dose ranging study. J Urol. 2013;189(2):595–601.PubMedCrossRefGoogle Scholar
  133. 133.
    Peters KM, Dmochowski RR, Carr LK, Robert M, Kaufman MR, Sirls LT, et al. Autologous muscle derived cells for treatment of stress urinary incontinence in women. J Urol. 2014;192(2):469–76.PubMedCrossRefGoogle Scholar
  134. 134.
    Yamamoto T, Gotoh M, Kato M, Majima T, Toriyama K, Kamei Y, et al. Periurethral injection of autologous adipose-derived regenerative cells for the treatment of male stress urinary incontinence: report of three initial cases. Int J Urol. 2012;19(7):652–9.PubMedCrossRefGoogle Scholar
  135. 135.
    Gotoh M, Yamamoto T, Kato M, Majima T, Toriyama K, Kamei Y, et al. Regenerative treatment of male stress urinary incontinence by periurethral injection of autologous adipose-derived regenerative cells: 1-year outcomes in 11 patients. Int J Urol. 2014;21(3):294–300.PubMedCrossRefGoogle Scholar
  136. 136.
    Lee CN, Jang JB, Kim JY, Koh C, Baek JY, Lee KJ. Human cord blood stem cell therapy for treatment of stress urinary incontinence. J Korean Med Sci. 2010;25(6):813–6.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Shirvan MK, Alamdari DH, Mahboub MD, Ghanadi A, Rahimi HR, Seifalian AM. A novel cell therapy for stress urinary incontinence, short-term outcome. Neurourol Urodyn. 2013;32(4):377–82.PubMedCrossRefGoogle Scholar
  138. 138.
    Pokrywczynska M, Adamowicz J, Czapiewska M, Balcerczyk D, Jundzill A, Nowacki M, et al. Targeted therapy for stress urinary incontinence: a systematic review based on clinical trials. Expert Opin Biol Ther. 2016;16(2):233–42.PubMedCrossRefGoogle Scholar
  139. 139.
    Herschorn S, Radomski SB. Collagen injections for genuine stress urinary incontinence: patient selection and durability. Int Urogynecol J Pelvic Floor Dysfunct. 1997;8(1):18–24.PubMedCrossRefGoogle Scholar
  140. 140.
    Blaganje M, Lukanovic A. Intrasphincteric autologous myoblast injections with electrical stimulation for stress urinary incontinence. Int J Gynaecol Obstet. 2012;117(2):164–7.PubMedCrossRefGoogle Scholar
  141. 141.
    Gras S, Klarskov N, Lose G. Intraurethral injection of autologous minced skeletal muscle: a simple surgical treatment for stress urinary incontinence. J Urol. 2014;192(3):850–5.PubMedCrossRefGoogle Scholar
  142. 142.
    Kuismanen K, Sartoneva R, Haimi S, Mannerstrom B, Tomas E, Miettinen S, et al. Autologous adipose stem cells in treatment of female stress urinary incontinence: results of a pilot study. Stem Cells Transl Med. 2014;3(8):936–41.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Klein G, Hart ML, Brinchmann JE, Rolauffs B, Stenzl A, Sievert KD, et al. Mesenchymal stromal cells for sphincter regeneration. Adv Drug Deliv Rev. 2015;82–83:123–36.PubMedCrossRefGoogle Scholar
  144. 144.
    Ranganath SH, Levy O, Inamdar MS, Karp JM. Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell. 2012;10(3):244–58.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Lavoie JR, Rosu-Myles M. Uncovering the secretes of mesenchymal stem cells. Biochimie. 2013;95(12):2212–21.PubMedCrossRefGoogle Scholar
  146. 146.
    Deng KL, Lin DL, Hanzlicek B, Balog B, Penn MS, Kiedrowski MJ, et al. Mesenchymal stem cells and their secretome partially restore nerve and urethral function in a dual muscle and nerve injury stress urinary incontinence model. Am J Physiol-Renal. 2015;308(2):F92–F100.CrossRefGoogle Scholar
  147. 147.
    Jiang HH, Damaser MS. Animal models of stress urinary incontinence. Handb Exp Pharmacol. 2011;202:45–67.CrossRefGoogle Scholar
  148. 148.
    Hong SH, Piao S, Kim IG, Lee JY, Cho HJ, Kim SW, et al. Comparison of three types of stress urinary incontinence rat models: electrocauterization, pudendal denervation, and vaginal distension. Urology. 2013;81(2):465.e1–6.CrossRefGoogle Scholar
  149. 149.
    Koike Y, Furuta A, Suzuki Y, Honda M, Naruoka T, Asano K, et al. Pathophysiology of urinary incontinence in murine models. Int J Urol. 2013;20(1):64–71.PubMedCrossRefGoogle Scholar
  150. 150.
    Herrera-Imbroda B, Lara MF, Izeta A, Sievert KD, Hart ML. Stress urinary incontinence animal models as a tool to study cell-based regenerative therapies targeting the urethral sphincter. Adv Drug Deliv Rev. 2015;82–83:106–16.PubMedCrossRefGoogle Scholar
  151. 151.
    Sloff M, Simaioforidis V, de Vries R, Oosterwijk E, Feitz W. Tissue engineering of the bladder – reality or myth? A systematic review. J Urol. 2014;192(4):1035–42.PubMedCrossRefGoogle Scholar
  152. 152.
    Eberli D, Aboushwareb T, Soker S, Yoo JJ, Atala A. Muscle precursor cells for the restoration of irreversibly damaged sphincter function. Cell Transplant. 2012;21(9):2089–98.PubMedCrossRefGoogle Scholar
  153. 153.
    Williams JK, Eckman D, Dean A, Moradi M, Allickson J, Cline JM, et al. The dose-effect safety profile of skeletal muscle precursor cell therapy in a dog model of intrinsic urinary sphincter deficiency. Stem Cells Transl Med. 2015;4(3):286–94.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Burdzinska A, Crayton R, Dybowski B, Idziak M, Gala K, Radziszewski P, et al. The effect of endoscopic administration of autologous porcine muscle-derived cells into the urethral sphincter. Urology. 2013;82(3):743.e1–8.CrossRefGoogle Scholar
  155. 155.
    Ganzer R, Kohler D, Neuhaus J, Dorschner W, Stolzenburg JU. Is the rhesus monkey (Macaca mulatta) comparable to humans? Histomorphology of the sphincteric musculature of the lower urinary tract including 3D-reconstruction. Anat Histol Embryol. 2004;33(6):355–61.PubMedCrossRefGoogle Scholar
  156. 156.
    Kaplan JR, Manuck SB. Ovarian dysfunction, stress, and disease: a primate continuum. ILAR J. 2004;45(2):89–115.PubMedCrossRefGoogle Scholar
  157. 157.
    Hijaz AK, Grimberg KO, Tao M, Schmotzer B, Sadeghi Z, Lin YH, et al. Stem cell homing factor, CCL7, expression in mouse models of stress urinary incontinence. Female Pelvic Med Reconstr Surg. 2013;19(6):356–61.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Lau TT, Wang DA. Stromal cell-derived factor-1 (SDF-1): homing factor for engineered regenerative medicine. Expert Opin Biol Ther. 2011;11(2):189–97.PubMedCrossRefGoogle Scholar
  159. 159.
    Herberg S, Shi XM, Johnson MH, Hamrick MW, Isales CM, Hill WD. Stromal cell-derived factor-1 beta mediates cell survival through enhancing autophagy in bone marrow-derived mesenchymal stem cells. Plos One. 2013;8(3):e58207.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Christ GJ, Saul JM, Furth ME, Andersson KE. The pharmacology of regenerative medicine. Pharmacol Rev. 2013;65(3):1091–133.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Nagasawa T. CXC chemokine ligand 12 (CXCL12) and its receptor CXCR4. J Mol Med. 2014;92(5):433–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Urology, School of MedicineKyungpook National UniversityDaeguSouth Korea

Personalised recommendations