Future Directions

  • Lorella Ceschini
  • Arne Dahle
  • Manoj Gupta
  • Anders Eric Wollmar Jarfors
  • S. Jayalakshmi
  • Alessandro Morri
  • Fabio Rotundo
  • Stefania Toschi
  • R. Arvind Singh
Part of the Engineering Materials book series (ENG.MAT.)


Most of the work carried out on microstructural and mechanical characterization of Al and Mg based nanocomposites is currently based on laboratory-scale research activities. Aiming to fully exploit the potential of MMNCs at a larger scale, however, the feasibility of the manufacturing processes to produce nanocomposite components should be investigated at a much larger-scale. In this chapter, industrial scaling-up issues related to casting processes are highlighted and discussed, as well as the translation of MMNCs to the product level. Critical aspects still partially unexplored in the literature, such as fatigue properties, corrosion behavior and recycling of MMNCs will be also presented.


High Cycle Fatigue Bumper Beam High Cycle Fatigue Test High Cycle Fatigue Behaviour Metal Matrix Nanocomposites 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Koli, D.K., Agnihotri, G., Purohit, R.: Properties and characterization of Al-Al2O3 composites processed by casting and powder metallurgy routes (review). Int J Latest Trends Eng Technol 2, 486–496 (2013)Google Scholar
  2. 2.
    Gupta M, Sharon NML (2011) Magnesium, magnesium alloys, and magnesium composites. WileyGoogle Scholar
  3. 3.
    Suryanarayana, C., Al-Aqeeli, N.: Mechanically alloyed nanocomposites. Prog. Mater. Sci. 58, 383–502 (2013). doi: 10.1016/j.pmatsci.2012.10.001 CrossRefGoogle Scholar
  4. 4.
    Choi H, Cho W, Li XC, et al (2013) Scale-up ultrasonic processing system for batch production of Metallic nanocomposites. In: AFS Proc. pp 1–7Google Scholar
  5. 5.
    Kirkwood, D.H., Kapranos, P.: Semi-solid processing of Alloys Met Mater 5, 16–19 (1989)Google Scholar
  6. 6.
    Decker, R.F, Carnahan R.D, Newman, R.O.: Thixomolding. In: Proceedings 47th Annual World Magnesium Conference, pp 106–116 (1990)Google Scholar
  7. 7.
    Suraj, P.R.: Metal-matrix composites for space applications. J Miner Met Mater Soc 53, 14–17 (2001)Google Scholar
  8. 8.
    Ghasemi Yazdabadi H, Ekrami A, Kim HS, Simchi A (2013) An investigation on the fatigue fracture of P/M Al-SiC nanocomposites. Metall Mater Trans A 44:2662–2671. doi: 10.1007/s11661-013-1620-3
  9. 9.
    LLorca J (2002) Fatigue of particle-and whisker-reinforced metal-matrix composites. Prog Mater Sci 47: 283–353. doi: 10.1016/S0079-6425(00)00006-2
  10. 10.
    Srivatsan, T.S., Godbole, C., Paramsothy, M., Gupta, M.: The role of aluminum oxide particulate reinforcements on cyclic fatigue and final fracture behavior of a novel magnesium alloy. Mater Sci Eng A 532, 196–211 (2012). doi: 10.1016/j.msea.2011.10.081 CrossRefGoogle Scholar
  11. 11.
    Srivatsan, T.S., Godbole, C., Paramsothy, M., Gupta, M.: Influence of nano-sized carbon nanotube reinforcements on tensile deformation, cyclic fatigue, and final fracture behavior of a magnesium alloy. J Mater Sci 47, 3621–3638 (2011). doi: 10.1007/s10853-011-6209-x CrossRefGoogle Scholar
  12. 12.
    Goh, C.S., Wei, J., Lee, L.C., Gupta, M.: Ductility improvement and fatigue studies in Mg-CNT nanocomposites. Compos Sci Technol 68, 1432–1439 (2008). doi: 10.1016/j.compscitech.2007.10.057 CrossRefGoogle Scholar
  13. 13.
    Hihara, L.H., Latanision, R.M.: Corrosion of metal matrix composites. Int Mater Rev 39, 245–264 (1994). doi: 10.1179/095066094790151026 CrossRefGoogle Scholar
  14. 14.
    Pardo, A., Merino, M.C., Merino, S., et al.: Influence of reinforcement proportion and matrix composition on pitting corrosion behaviour of cast aluminium matrix composites (A3xx.x/SiCp). Corros Sci 47, 1750–1764 (2005). doi: 10.1016/j.corsci.2004.08.010 CrossRefGoogle Scholar
  15. 15.
    Mahmoud, T.S., El-Kady, E.Y., Al-Shihri, A.: Mechanical and corrosion behaviours of Al/SiC and Al/Al2O3 metal matrix nanocomposites fabricated using powder metallurgy route. Corros Eng Sci Technol 47, 45–53 (2012). doi: 10.1179/1743278211Y.0000000014 CrossRefGoogle Scholar
  16. 16.
    El-Mahallawi, I., Eigenfield, K., Kouta. F, et al.: Synthesis and characterization of new cast A356/(Al2O3)P metal matrix nano-composites. In: Proceedings 2nd International Conference Exhibition on Multifunctional nanocomposites Nanomater (2008)Google Scholar
  17. 17.
    Aung, N.N., Zhou, W., Goh, C.S., et al.: Effect of carbon nanotubes on corrosion of Mg–CNT composites. Corros Sci 52, 1551–1553 (2012)CrossRefGoogle Scholar
  18. 18.
    Kukreja, M., Balasubramaniam, R., Nguyen, Q.B., Gupta, M.: Enhancing corrosion resistance of Mg alloy AZ31B in NaCl solution using alumina reinforcement at nanolength scale. Corros Eng Sci Technol 44, 381–383 (2009). doi: 10.1179/147842208X356857 CrossRefGoogle Scholar
  19. 19.
    Nguyen, Q.B., Gupta, M., Srivatsan, T.S.: On the role of nano-alumina particulate reinforcements in enhancing the oxidation resistance of magnesium alloy AZ31B. Mater Sci Eng A 500, 233–237 (2009). doi: 10.1016/j.msea.2008.09.050 CrossRefGoogle Scholar
  20. 20.
    Shuster, D.M., Skibo, M.D., Bruski, R.S., et al.: The recycling and reclamation of metal-matrix composites. J Miner Met Mater Soc 45, 26–30 (1993)CrossRefGoogle Scholar
  21. 21.
    Paramsothy, M., Nguyen, Q.B., Tun, K.S., et al.: Mechanical property retention in remelted microparticle to nanoparticle AZ31/Al2O3 composites. J Alloys Compd 506, 600–606 (2010). doi: 10.1016/j.jallcom.2010.07.123 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd 2017

Authors and Affiliations

  • Lorella Ceschini
    • 1
  • Arne Dahle
    • 2
  • Manoj Gupta
    • 3
  • Anders Eric Wollmar Jarfors
    • 4
  • S. Jayalakshmi
    • 5
  • Alessandro Morri
    • 6
  • Fabio Rotundo
    • 7
  • Stefania Toschi
    • 8
  • R. Arvind Singh
    • 9
  1. 1.Department of Industrial Engineering (DIN)Alma Mater Studiorum–University of BolognaBolognaItaly
  2. 2.School of EngineeringJönköping UniversityJönköpingSweden
  3. 3.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore
  4. 4.School of EngineeringJönköping UniversityJönköpingSweden
  5. 5.Department of Mechanical EngineeringBannari Amman Institute of Technology (BIT)SathyamangalamIndia
  6. 6.Interdepartmental Center for Industrial Research-Advanced Mechanics and Materials (CIRI-MAM)Alma Mater Studiorum–University of BolognaBolognaItaly
  7. 7.Interdepartmental Center for Industrial Research-Advanced Mechanics and Materials (CIRI-MAM)Alma Mater Studiorum–University of BolognaBolognaItaly
  8. 8.Department of Industrial Engineering (DIN)Alma Mater Studiorum–University of BolognaBolognaItaly
  9. 9.Department of Aeronautical EngineeringBannari Amman Institute of Technology (BIT)SathyamangalamIndia

Personalised recommendations