Tribological Characteristics of Al and Mg Nanocomposites

  • Lorella Ceschini
  • Arne Dahle
  • Manoj Gupta
  • Anders Eric Wollmar Jarfors
  • S. Jayalakshmi
  • Alessandro Morri
  • Fabio Rotundo
  • Stefania Toschi
  • R. Arvind Singh
Part of the Engineering Materials book series (ENG.MAT.)


Al and Mg nanocomposites have good mechanical properties and are potential tribological candidates for applications where weight-reduction is a critical factor, such as in automotive, aerospace and sports. This chapter presents the tribological characteristics of various Al and Mg nanocomposites. The tribological properties of wear and friction of the light-metals nanocomposites are influenced by several factors such as: process and process parameters, composition and microstructure, mechanical properties, heat treatment to enhance mechanical properties, applied external parameters of velocity and load, and formation of in situ protective films/layers. Examples of tribological investigations of nanocomposites that highlight these influencing factors are presented in the view of providing a comprehensive outlook on the tribology of light-metals nanocomposites. Some suggestions for future work are also mentioned.


Wear Rate Spark Plasma Sinter Tribological Property Lower Wear Rate Mechanically Mixed Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chellman, D., Langenbeck, S.: Aerospace applications of advanced aluminium alloys. J Eng Mater 77–78, 49–60 (1993)Google Scholar
  2. 2.
    Shibata, K., Ushio, H.: Tribological application of MMCs for reducing engine weight. J Tribol Int 27, 39–41 (1994)CrossRefGoogle Scholar
  3. 3.
    Hosseini, N., Karimzadeh, F., Abbasi, M.H., Enayati, M.H.: Tribological properties of Al6061–Al2O3 nanocomposite prepared by milling and hot pressing. Mater Des 31, 4777–4785 (2010)CrossRefGoogle Scholar
  4. 4.
    Hosseini, N., Karimzadeh, F., Abbasi, M.H., Enayati, M.H.: A comparative study on the wear properties of coarse-grained Al6061 alloy and nanostructured Al6061–Al2O3 composites. Tribol Int 54, 58–67 (2012)CrossRefGoogle Scholar
  5. 5.
    Akbari, M.K., Baharvandi, H.R., Mirzaee, O.: Nano-sized aluminum oxide reinforced commercial casting A356 alloy matrix: Evaluation of hardness, wear resistance and compressive strength focusing on particle distribution in aluminum matrix. Compos Part B 52, 262–268 (2013)CrossRefGoogle Scholar
  6. 6.
    Nemati, N., Khosroshahi, R., Emamy, M., Zolriasatein, A.: Investigation of microstructure, hardness and wear properties of Al–4.5 wt.% Cu–TiC nanocomposites produced by mechanical milling. Mater Des 32, 3718–3729 (2011). doi: 10.1016/j.matdes.2011.03.056 CrossRefGoogle Scholar
  7. 7.
    Jeyasimman D, Narayanaswamy R, Ponalagusamy R, Anandakrishnan V, Kamaraj M (2014) The effects of various reinforcements on dry sliding wear behaviour of AA 6061 nanocomposites. Mater Des 64, 783–793Google Scholar
  8. 8.
    Mostafapour Asl, A., Khandani, S.T.: Role of hybrid ratio in microstructural, mechanical and sliding wear properties of the Al5083/graphite/Al2O3 surface hybrid nanocomposite fabricated via friction stir processing method. Mater Sci Eng A 559, 549–557 (2013)CrossRefGoogle Scholar
  9. 9.
    Bathula, S., Saravanan, M., Dhar, A.: Nanoindentation and Wear Characteristics of Al 5083/SiCp Nanocomposites Synthesized by High Energy Ball Milling and Spark Plasma Sintering. J Mater Sci Technol 28, 969–975 (2012). doi: 10.1016/S1005-0302(12)60160-1 CrossRefGoogle Scholar
  10. 10.
    Darmiani, E., Danaee, I., Golozar, M.A., et al.: Reciprocating wear resistance of Al-SiC nano-composite fabricated by accumulative roll bonding process. Mater Des 50, 497–502 (2013)CrossRefGoogle Scholar
  11. 11.
    Mohammad Sharifi, E., Karimzadeh, F., Enayati, M.H.: Fabrication and evaluation of mechanical and tribological properties of boron carbide reinforced aluminum matrix nanocomposites. Mater Des 32, 3263–3271 (2011). doi: 10.1016/j.matdes.2011.02.033 CrossRefGoogle Scholar
  12. 12.
    Alizadeh, A., Taheri-Nassaj, E.: Mechanical properties and wear behavior of Al–2 wt.% Cu alloy composites reinforced by B4C nanoparticles and fabricated by mechanical milling and hot extrusion. Mater Charact 67, 119–128 (2012). doi: 10.1016/j.matchar.2012.02.006 CrossRefGoogle Scholar
  13. 13.
    Ramachandra, M., Abhishek, A., Siddeshwar, P., Bharathi, V.: Hardness and wear resistance of ZrO2 nano particle reinforced Al nanocomposites produced by powder metallurgy. Procedia Mater Sci 10, 212–219 (2015)CrossRefGoogle Scholar
  14. 14.
    Bastwros, M.M.H., Esawi, A.M.K., Wifi, A.: Friction and wear behaviour of Al–CNT composites. Wear 307, 164–173 (2013)CrossRefGoogle Scholar
  15. 15.
    Al-Qutub, A.M., Khalil, A., Saheb, N., Hakeem, A.S.: Wear and friction behaviour of Al6061 alloy reinforced with carbon nanotubes. Wear 297, 752–761 (2013)CrossRefGoogle Scholar
  16. 16.
    Sameezadeh, M., Emamy, M., Farhangi, H.: Effects of particulate reinforcement and heat treatment on the hardness and wear properties of AA 2024-MoSi2 nanocomposites. Mater Des 32, 2157–2164 (2011)CrossRefGoogle Scholar
  17. 17.
    Sahu, K., Rana, R.S., Purohit, R., et al.: Wear behaviour and micro-structural study of A/Al2O3 nano-composites before and after heat treatment. Mater Today Proc 2, 1892–1900 (2015)CrossRefGoogle Scholar
  18. 18.
    Nemati, N., Emamy, M., Penkov, O.V., et al.: Mechanical and high temperature wear properties of extruded Al composite reinforced with Al13Fe4 CMA nanoparticles. Mater. Des. 90, 532–544 (2016)Google Scholar
  19. 19.
    Lim, C.Y.H., Leo, D.K., Ang, S., Gupta, M.: Wear of magnesium composites reinforced with nan-sized alumina particulates. Wear 259, 620–625 (2005)CrossRefGoogle Scholar
  20. 20.
    Archard, J.F.: Contact and rubbing of flat surfaces. J Appl Phys 24, 981–988 (1953)CrossRefGoogle Scholar
  21. 21.
    Shanthi, M., Nguyen, Q.B., Gupta, M.: Sliding wear behaviour of calcium containing AZ32B/Al2O3 nanocomposites. Wear 269, 473–479 (2010)CrossRefGoogle Scholar
  22. 22.
    Srinivasan, M., Loganathan, C., Kamaraj, M., et al.: Sliding wear behaviour of AZ32B magnesium alloy and nano-composite. Trans Nonferrous Met Soc China 22, 60–65 (2012)CrossRefGoogle Scholar
  23. 23.
    Habibnejad-Korayem, M., Mahmudi, R., Ghasemi, H.M., Poole, W.J.: Tribological behavior of pure Mg and AZ31 magnesium alloy strengthened by Al2O3 nano-particles. Wear 268, 405–412 (2010). doi: 10.1016/j.wear.2009.08.031 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd 2017

Authors and Affiliations

  • Lorella Ceschini
    • 1
  • Arne Dahle
    • 2
  • Manoj Gupta
    • 3
  • Anders Eric Wollmar Jarfors
    • 4
  • S. Jayalakshmi
    • 5
  • Alessandro Morri
    • 6
  • Fabio Rotundo
    • 7
  • Stefania Toschi
    • 8
  • R. Arvind Singh
    • 9
  1. 1.Department of Industrial Engineering (DIN)Alma Mater Studiorum–University of BolognaBolognaItaly
  2. 2.School of EngineeringJönköping UniversityJönköpingSweden
  3. 3.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore
  4. 4.School of EngineeringJönköping UniversityJönköpingSweden
  5. 5.Department of Mechanical EngineeringBannari Amman Institute of Technology (BIT)SathyamangalamIndia
  6. 6.Interdepartmental Center for Industrial Research-Advanced Mechanics and Materials (CIRI-MAM)Alma Mater Studiorum–University of BolognaBolognaItaly
  7. 7.Interdepartmental Center for Industrial Research-Advanced Mechanics and Materials (CIRI-MAM)Alma Mater Studiorum–University of BolognaBolognaItaly
  8. 8.Department of Industrial Engineering (DIN)Alma Mater Studiorum–University of BolognaBolognaItaly
  9. 9.Department of Aeronautical EngineeringBannari Amman Institute of Technology (BIT)SathyamangalamIndia

Personalised recommendations