Mechanical Behavior of Al and Mg Based Nanocomposites

  • Lorella Ceschini
  • Arne Dahle
  • Manoj Gupta
  • Anders Eric Wollmar Jarfors
  • S. Jayalakshmi
  • Alessandro Morri
  • Fabio Rotundo
  • Stefania Toschi
  • R. Arvind Singh
Part of the Engineering Materials book series (ENG.MAT.)


This chapter provides an insight into the mechanical properties of Al and Mg based nanocomposites. Tensile and compression properties, ductility and the influence of heat treatment on mechanical behavior of both aluminum and magnesium based nanocomposites are discussed. Experimental data (hardness, tensile/compression strength, ductility) reported in recent literature works is presented and compared, to highlight the effect of different processing techniques on the mechanical response of nanocomposites.


Al2O3 Nanoparticles Unreinforced Alloy Nanoparticle Addition Unreinforced Matrix Orowan Strengthen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Sajjadi, S.A., Ezatpour HR, H.R., Torabi Parizi, M.: Comparison of microstructure and mechanical properties of A356 aluminum alloy/Al2O3 composites fabricated by stir and compo-casting processes. Mater Des 34, 106–111 (2012). doi: 10.1016/j.matdes.2011.07.037 CrossRefGoogle Scholar
  2. 2.
    Yar, A., Montazerian, M., Abdizadeh, H., Baharvandi, H.R.: Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano-particle MgO. J Alloys Compd 484, 400–404 (2009). doi: 10.1016/j.jallcom.2009.04.117 CrossRefGoogle Scholar
  3. 3.
    Schultz, B.F., Ferguson, J.B., Rohatgi, P.K.: Microstructure and hardness of Al2O3 nanoparticle reinforced Al–Mg composites fabricated by reactive wetting and stir mixing. Mater Sci Eng A 530, 87–97 (2011). doi: 10.1016/j.msea.2011.09.042 CrossRefGoogle Scholar
  4. 4.
    Sajjadi, S.A., Ezatpour, H.R., Beygi, H.: Microstructure and mechanical properties of Al–Al2O3 micro and nano composites fabricated by stir casting. Mater Sci Eng A 528, 8765–8771 (2011). doi: 10.1016/j.msea.2011.08.052 CrossRefGoogle Scholar
  5. 5.
    Mazahery, A., Shabani, M.: Mechanical properties of A356 matrix composites reinforced with nano SiC particles. Strength Mater 44, 686–692 (2012)CrossRefGoogle Scholar
  6. 6.
    El-Mahallawi, I., Abdelkader, H., Yousef, L., et al.: Influence of Al2O3 nano-dispersions on microstructure features and mechanical properties of cast and T6 heat-treated Al Si hypoeutectic Alloys. Mat Sci Eng A 556, 76–87 (2012)CrossRefGoogle Scholar
  7. 7.
    Kamali Ardakani, M.R., Khorsand, S., Amirkhanlou, S., Javad Nayyeri, M.: Application of compocasting and cross accumulative roll bonding processes for manufacturing high-strength, highly uniform and ultra-fine structured Al/SiCp nanocomposite. Mater Sci Eng A 592, 121–127 (2014). doi: 10.1016/j.msea.2013.11.006 CrossRefGoogle Scholar
  8. 8.
    Ezatpour, H.R., Sajjadi, S.A., Sabzevar, M.H., Huang, Y.: Investigation of microstructure and mechanical properties of Al6061-nanocomposite fabricated by stir casting. Mater Des 55, 921–928 (2014). doi: 10.1016/j.matdes.2013.10.060 CrossRefGoogle Scholar
  9. 9.
    Su, H., Gao, W., Zhang, H., et al.: Study on preparation of large sized nanoparticle reinforced aluminium matrix composite by solid-liquid mixed casting process. Mater Sci Technol 28, 178–183 (2012). doi: 10.1179/1743284711Y.0000000009 CrossRefGoogle Scholar
  10. 10.
    Mazahery, A., Abdizadeh, H., Baharvandi, H.R.: Development of high-performance A356/nano-Al2O3 composites. Mater Sci Eng A 518, 61–64 (2009). doi: 10.1016/j.msea.2009.04.014 CrossRefGoogle Scholar
  11. 11.
    Tahamtan, S., Halvaee, A., Emamy, M., Zabihi, M.S.: Fabrication of Al/A206–Al2O3 nano/micro composite by combining ball milling and stir casting technology. Mater Des 49, 347–359 (2013). doi: 10.1016/j.matdes.2013.01.032 CrossRefGoogle Scholar
  12. 12.
    Dehghan Hamedan, A., Shahmiri, M.: Production of A356–1wt% SiC nanocomposite by the modified stir casting method. Mater Sci Eng A 556, 921–926 (2012). doi: 10.1016/j.msea.2012.07.093 CrossRefGoogle Scholar
  13. 13.
    Lim, J.-Y., Oh, S.-I., Kim, Y.-C., et al.: Effects of CNF dispersion on mechanical properties of CNF reinforced A7xxx nanocomposites. Mater Sci Eng A 556, 337–342 (2012). doi: 10.1016/j.msea.2012.06.096 CrossRefGoogle Scholar
  14. 14.
    Oh, S.I., Lim, J.Y., Kim, Y.C., et al.: Fabrication of carbon nanofiber reinforced aluminum alloy nanocomposites by a liquid process. J Alloys Compd 542, 111–117 (2012). doi: 10.1016/j.jallcom.2012.07.029 CrossRefGoogle Scholar
  15. 15.
    Karbalaei Akbari, M., Mirzaee, O., Baharvandi, H.R.: Fabrication and study on mechanical properties and fracture behavior of nanometric Al2O3 particle-reinforced A356 composites focusing on the parameters of vortex method. Mater Des 46, 199–205 (2013). doi: 10.1016/j.matdes.2012.10.008 CrossRefGoogle Scholar
  16. 16.
    So, K.P., Jeong, J.C., Park, J.G., et al.: SiC formation on carbon nanotube surface for improving wettability with aluminum. Compos Sci Technol 74, 6–13 (2013). doi: 10.1016/j.compscitech.2012.09.014 CrossRefGoogle Scholar
  17. 17.
    Choi, H., Konishi, H., Li, X.: Al2O3 nanoparticles induced simultaneous refinement and modification of primary and eutectic Si particles in hypereutectic Al–20Si alloy. Mater Sci Eng A 541, 159–165 (2012)CrossRefGoogle Scholar
  18. 18.
    Wang, D., De Cicco, M.P., Li, X.: Using diluted master nanocomposites to achieve grain refinement and mechanical property enhancement in as-cast Al–9Mg. Mater Sci Eng A 532, 396–400 (2012). doi: 10.1016/j.msea.2011.11.002 CrossRefGoogle Scholar
  19. 19.
    Li, X., Yang, Y., Cheng, X.: Ultrasonic-assisted fabrication of metal matrix nanocomposites. J Mater Sci 39, 3211–3212 (2004). doi: 10.1023/B:JMSC.0000025862.23609.6f CrossRefGoogle Scholar
  20. 20.
    Yang, Y., Lan, J., Li, X.: Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Mater Sci Eng A 380, 378–383 (2004). doi: 10.1016/j.msea.2004.03.073 CrossRefGoogle Scholar
  21. 21.
    Mula, S., Padhi, P., Panigrahi, S.C., et al.: On structure and mechanical properties of ultrasonically cast Al–2% Al2O3 nanocomposite. Mater Res Bull 44, 1154–1160 (2009). doi: 10.1016/j.materresbull.2008.09.040 CrossRefGoogle Scholar
  22. 22.
    Choi, H., Jones, M., Konishi, H., Li, X.: Effect of Combined Addition of Cu and Aluminum Oxide Nanoparticles on Mechanical Properties and Microstructure of Al-7Si-0.3 Mg Alloy. Metall. Mater. Trans. A 43, 738–746 (2011). doi: 10.1007/s11661-011-0905-7 CrossRefGoogle Scholar
  23. 23.
    Mula, S., Pabi, S.K., Koch, C.C., et al.: Workability and mechanical properties of ultrasonically cast Al–Al2O3 nanocomposites. Mater Sci Eng A 558, 485–491 (2012). doi: 10.1016/j.msea.2012.08.032 CrossRefGoogle Scholar
  24. 24.
    Narasimha Murthy, I., Venkata Rao, D., Babu Rao, J.: Microstructure and mechanical properties of aluminum–fly ash nano composites made by ultrasonic method. Mater Des 35, 55–65 (2012). doi: 10.1016/j.matdes.2011.10.019 CrossRefGoogle Scholar
  25. 25.
    Su, H., Gao, W., Feng, Z., Lu, Z.: Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites. Mater Des 36, 590–596 (2012). doi: 10.1016/j.matdes.2011.11.064 CrossRefGoogle Scholar
  26. 26.
    Yang, Y., Li, X.: Ultrasonic Cavitation-Based Nanomanufacturing of Bulk Aluminum Matrix Nanocomposites. J Manuf Sci Eng 129, 252 (2007). doi: 10.1115/1.2194064 CrossRefGoogle Scholar
  27. 27.
    Li, Q., Rottmair, C.A., Singer, R.F.: CNT reinforced light metal composites produced by melt stirring and by high pressure die casting. Compos Sci Technol 70, 2242–2247 (2010). doi: 10.1016/j.compscitech.2010.05.024 CrossRefGoogle Scholar
  28. 28.
    Yang, Y., Li, X.: Ultrasonic Cavitation Based Nanomanufacturing of Bulk Aluminum Matrix Nanocomposites. J Manuf Sci Eng 129, 497 (2007). doi: 10.1115/1.2714583 CrossRefGoogle Scholar
  29. 29.
    Akbari, M.K., Baharvandi, H.R., Mirzaee, O.: Fabrication of nano-sized Al2O3 reinforced casting aluminum composite focusing on preparation process of reinforcement powders and evaluation of its properties. Compos Part B Eng 55, 426–432 (2013). doi: 10.1016/j.compositesb.2013.07.008 CrossRefGoogle Scholar
  30. 30.
    Sanaty-Zadeh, A.: Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect. Mater Sci Eng A 531, 112–118 (2012). doi: 10.1016/j.msea.2011.10.043 CrossRefGoogle Scholar
  31. 31.
    Zhang, Z., Chen, D.L.: Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Mater Sci Eng A 483–484, 148–152 (2008). doi: 10.1016/j.msea.2006.10.184 CrossRefGoogle Scholar
  32. 32.
    Mazahery, A., Ostadshabani, M.: Investigation on mechanical properties of nano-Al2O3-reinforced aluminum matrix composites. J Compos Mater 45, 2579–2586 (2011). doi: 10.1177/0021998311401111 CrossRefGoogle Scholar
  33. 33.
    Abdizadeh, H., Ebrahimifard, R., Baghchesara, M.A.: Investigation of microstructure and mechanical properties of nano MgO reinforced Al composites manufactured by stir casting and powder metallurgy methods: a comparative study. Compos Part B 56, 217–221 (2014). doi: 10.1016/j.compositesb.2013.08.023 CrossRefGoogle Scholar
  34. 34.
    Alizadeh, A., Hajizamani, M.: Hot extrusion process effect on mechanical behavior of stir cast al based composites reinforced with mechanically milled B 4 C nanoparticles. J Mater Sci Technol 27, 1113–1119 (2011). doi: 10.1016/S1005-0302(12)60005-X CrossRefGoogle Scholar
  35. 35.
    Ahmed, A., Neely, A.J., Shankar, K., et al.: Synthesis, Tensile Testing, and Microstructural Characterization of Nanometric SiC Particulate-Reinforced Al 7075 Matrix Composites. Metall Mater Trans A 41, 1582–1591 (2010). doi: 10.1007/s11661-010-0201-y CrossRefGoogle Scholar
  36. 36.
    McLean D (1957) Grain Boundaries in metals. 118Google Scholar
  37. 37.
    Zhong, W.M., L’Esperance, G., Suéry, M.: Interfacial Reactions in Al-Mg (5083)/SiCp composites during fabrication and remelting. Metall Mater Trans A 26A, 2637–2649 (1995)CrossRefGoogle Scholar
  38. 38.
    Abbasipour, B., Niroumand, B., Monirvaghefi, S.: Mechanical properties of A356-CNT cast nanocomposite. Suppl Proc Mater Process Interfaces 1, 733–740 (2012)CrossRefGoogle Scholar
  39. 39.
    Purushothaman, S., Tien, J.K.: Role of back stress in the creep behavior of particle strengthened alloys. Acta Metall. 26, 519 (1978)CrossRefGoogle Scholar
  40. 40.
    Fernández, R., González-Doncel, G.: Threshold stress and load partitioning during creep of metal matrix composites. Acta Mater 56, 2549–2562 (2008). doi: 10.1016/j.actamat.2008.01.037 CrossRefGoogle Scholar
  41. 41.
    Li, Y., Mohamed, F.A.: An investigation of creep behavior in an SiC-2124 Al composite. Acta Mater. 45, 4775–4785 (1997)CrossRefGoogle Scholar
  42. 42.
    Choi, H.J., Bae, D.H.: Creep properties of aluminum-based composite containing multi-walled carbon nanotubes. Scr Mater 65, 194–197 (2011). doi: 10.1016/j.scriptamat.2011.03.038 CrossRefGoogle Scholar
  43. 43.
    Monazzah, A.H., Simchi, A., Reihani, S.M.S.: Creep behavior of hot extruded Al-Al2O3 nanocomposite powder. Mater Sci Eng A 527, 2567–2571 (2010). doi: 10.1016/j.msea.2010.01.060 CrossRefGoogle Scholar
  44. 44.
    Cadek, J., Kucharova, K., Sustek, V.: A PM 2124Al-20SiC p composite: disappearance of true threshold creep behaviour at high testing temperatures. Scr Mater 40, 1269–1275 (1999)CrossRefGoogle Scholar
  45. 45.
    Lin, Z., Li, Y., Mohamed, F.A.: Creep and substructure in 5 vol.% SiC–2124 Al composite. Mater Sci Eng A 332, 330–342 (2002). doi: 10.1016/S0921-5093(01)01760-9 CrossRefGoogle Scholar
  46. 46.
    Hassan, S.F., Gupta, M.: Enhancing physical and mechanical properties of Mg using nanosized Al2O3 Particulates as reinforcement. Metall Mater Trans A 36, 2253–2258 (2005)CrossRefGoogle Scholar
  47. 47.
    Hassan, S.F., Gupta, M.: Development of nano-Y2O3 containing magnesium nanocomposites using solidification processing. J Alloys Compd 429, 176–183 (2007). doi: 10.1016/j.jallcom.2006.04.033 CrossRefGoogle Scholar
  48. 48.
    Hassan, S.F., Gupta, M.: Effect of Nano-ZrO2 Particulates Reinforcement on Microstructure and Mechanical Behavior of Solidification Processed Elemental Mg. J Compos Mater 41, 2533–2543 (2007). doi: 10.1177/0021998307074187 CrossRefGoogle Scholar
  49. 49.
    Sankaranarayanan, S., Jayalakshmi, S., Gupta, M.: Effect of ball milling the hybrid reinforcements on the microstructure and mechanical properties of Mg–(Ti + n-Al2O3) composites. J Alloys Compd 509, 7229–7237 (2011). doi: 10.1016/j.jallcom.2011.04.083 CrossRefGoogle Scholar
  50. 50.
    Sankaranarayanan, S., Sabat, R.K., Jayalakshmi, S., et al.: Effect of hybridizing micron-sized Ti with nano-sized SiC on the microstructural evolution and mechanical response of Mg–5.6Ti composite. J Alloys Compd 575, 207–217 (2013). doi: 10.1016/j.jallcom.2013.04.095 CrossRefGoogle Scholar
  51. 51.
    Nguyen, Q.B., Gupta, M.: Increasing significantly the failure strain and work of fracture of solidification processed AZ31B using nano-Al2O3 particulates. J Alloys Compd 459, 244–250 (2008). doi: 10.1016/j.jallcom.2007.05.038 CrossRefGoogle Scholar
  52. 52.
    Nguyen, Q.B., Gupta, M.: Microstructure and mechanical characteristics of AZ31B/Al2O3 nanocomposite with addition of Ca. J Compos Mater 43, 5–17 (2009). doi: 10.1177/0021998308096333 CrossRefGoogle Scholar
  53. 53.
    Paramsothy, M., Hassan, S.F., Srikanth, N., Gupta, M.: Simultaneous Enhancement of tensile/compressive strength and ductility of magnesium alloy AZ31 using carbon nanotubes. J Nanosci Nanotechnol 10, 956–964 (2010). doi: 10.1166/jnn.2010.1809 CrossRefGoogle Scholar
  54. 54.
    Nguyen, Q.B., Gupta, M.: Enhancing mechanical response of AZ31B using Cu+ nano-Al2O3 addition. Mater Sci Eng A 527, 1411–1416 (2010). doi: 10.1016/j.msea.2009.11.002 CrossRefGoogle Scholar
  55. 55.
    Nguyen, Q.B., Tun, K.S., Chan, J., et al.: Enhancing strength and hardness of AZ31B through simultaneous addition of nickel and nano-Al2O3 particulates. Mater Sci Eng A 528, 888–894 (2011). doi: 10.1016/j.msea.2010.10.021 CrossRefGoogle Scholar
  56. 56.
    Paramsothy, M., Chan, J., Kwok, R., Gupta, M.: The synergistic ability of Al2O3 nanoparticles to enhance mechanical response of hybrid alloy AZ31/AZ91. J Alloys Compd 509, 7572–7578 (2011). doi: 10.1016/j.jallcom.2011.04.120 CrossRefGoogle Scholar
  57. 57.
    Nguyen, Q., Tun, K., Chan, J., et al.: Simultaneous effect of nano-Al2O3 and micrometre Cu particulates on microstructure and mechanical properties of magnesium alloy AZ31. Mater Sci Technol 28, 227–233 (2012). doi: 10.1179/1743284711Y.0000000023 CrossRefGoogle Scholar
  58. 58.
    Paramsothy, M., Chan, J., Kwok, R., Gupta, M.: TiC nanoparticle addition to enhance the mechanical response of hybrid magnesium alloy. J Nanotechnol 2012, 1–9 (2012). doi: 10.1155/2012/401574 Google Scholar
  59. 59.
    Alam, M.E., Hamouda, A.M.S., Gupta, M.: Microstructure, thermal and mechanical response of AZ51/Al2O3 nanocomposite with 2wt.% Ca addition. Mater Des 50, 1–6 (2013). doi: 10.1016/j.matdes.2013.01.057 CrossRefGoogle Scholar
  60. 60.
    Paramsothy, M., Chan, J., Kwok, R., Gupta, M.: The effective reinforcement of magnesium alloy ZK60A using Al2O3 nanoparticles. J Nanoparticle Res 13, 4855–4866 (2011). doi: 10.1007/s11051-011-0464-2 CrossRefGoogle Scholar
  61. 61.
    Paramsothy, M., Chan, J., Kwok, R., Gupta, M.: Addition of CNTs to enhance tensile/compressive response of magnesium alloy ZK60A. Compos Part A Appl Sci Manuf 42, 180–188 (2011). doi: 10.1016/j.compositesa.2010.11.001 CrossRefGoogle Scholar
  62. 62.
    Jayaramanavar, P., Paramsothy, M., Balaji, A., Gupta, M.: Tailoring the tensile/compressive response of magnesium alloy ZK60A using Al2O3 nanoparticles. J Mater Sci 45, 1170–1178 (2009). doi: 10.1007/s10853-009-4059-6 CrossRefGoogle Scholar
  63. 63.
    Goh, C.S., Wei, J., Lee, L.C., Gupta, M.: Ductility improvement and fatigue studies in Mg-CNT nanocomposites. Compos Sci Technol 68, 1432–1439 (2008). doi: 10.1016/j.compscitech.2007.10.057 CrossRefGoogle Scholar
  64. 64.
    Goh, C.S., Wei, J., Lee, L.C., Gupta, M.: Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes. Mater Sci Eng A 423, 153–156 (2006). doi: 10.1016/j.msea.2005.10.071 CrossRefGoogle Scholar
  65. 65.
    Goh, C., Wei, J., Lee, L., Gupta, M.: Properties and deformation behaviour of Mg–Y2O3 nanocomposites. Acta Mater 55, 5115–5121 (2007). doi: 10.1016/j.actamat.2007.05.032 CrossRefGoogle Scholar
  66. 66.
    Paramsothy, M., Hassan, S.F., Srikanth, N., Gupta, M.: Enhancing tensile/compressive response of magnesium alloy AZ31 by integrating with Al2O3 nanoparticles. Mater Sci Eng A 527, 162–168 (2009). doi: 10.1016/j.msea.2009.07.054 CrossRefGoogle Scholar
  67. 67.
    Paramsothy, M., Chan, J., Kwok, R., Gupta, M.: Adding TiC nanoparticles to magnesium alloy ZK60A for strength/ductility enhancement. J Nanomater 2011, 1–9 (2011). doi: 10.1155/2011/642980 CrossRefGoogle Scholar
  68. 68.
    Paramsothy, M., Chan, J., Kwok, R., Gupta, M.: Enhanced mechanical response of magnesium alloy ZK60A containing Si3N4 nanoparticles. Compos Part A 42, 2093–2100 (2011). doi: 10.1016/j.compositesa.2011.09.019 CrossRefGoogle Scholar
  69. 69.
    Erman, A., Groza, J., Li, X., et al.: Nanoparticle effects in cast Mg-1 wt% SiC nano-composites. Mater Sci Eng A 558, 39–43 (2012). doi: 10.1016/j.msea.2012.07.048 CrossRefGoogle Scholar
  70. 70.
    Habibnejad-Korayem, M., Mahmudi, R., Poole, W.J.: Work hardening behavior of Mg-based nano-composites strengthened by Al2O3 nano-particles. Mater Sci Eng A 567, 89–94 (2013). doi: 10.1016/j.msea.2012.12.083 CrossRefGoogle Scholar
  71. 71.
    Lee, C., Huang, J., Hsieh, P.: Mg based nano-composites fabricated by friction stir processing. Scr Mater 54, 1415–1420 (2006). doi: 10.1016/j.scriptamat.2005.11.056 CrossRefGoogle Scholar
  72. 72.
    Cao, G., Konishi, H., Li, X.: Mechanical properties and microstructure of SiC-reinforced Mg-(2,4)Al-1Si nanocomposites fabricated by ultrasonic cavitation based solidification processing. Mater Sci Eng A 486, 357–362 (2008). doi: 10.1016/j.msea.2007.09.054 CrossRefGoogle Scholar
  73. 73.
    Habibnejad-Korayem, M., Mahmudi, R., Poole, W.J.: Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles. Mater Sci Eng A 519, 198–203 (2009). doi: 10.1016/j.msea.2009.05.001 CrossRefGoogle Scholar
  74. 74.
    Sun, K., Shi, Q.Y., Sun, Y.J., Chen, G.Q.: Microstructure and mechanical property of nano-SiCp reinforced high strength Mg bulk composites produced by friction stir processing. Mater Sci Eng A 547, 32–37 (2012). doi: 10.1016/j.msea.2012.03.071 CrossRefGoogle Scholar
  75. 75.
    Nie, K.B., Wang, X.J., Wu, K., et al.: Processing, microstructure and mechanical properties of magnesium matrix nanocomposites fabricated by semisolid stirring assisted ultrasonic vibration. J Alloys Compd 509, 8664–8669 (2011). doi: 10.1016/j.jallcom.2011.06.091 CrossRefGoogle Scholar
  76. 76.
    Zhou, X., Su, D., Wu, C., Liu, L.: Tensile mechanical properties and strengthening mechanism of hybrid carbon nanotube and Silicon carbide nanoparticle-reinforced magnesium alloy composites. J Nanomater 2012, 1–7 (2012). doi: 10.1155/2012/851862 Google Scholar
  77. 77.
    Nguyen, Q.B., Gupta, M.: Enhancing compressive response of AZ31B magnesium alloy using alumina nanoparticulates. Compos Sci Technol 68, 2185–2192 (2008). doi: 10.1016/j.compscitech.2008.04.020
  78. 78.
    Nguyen, Q.B., Gupta, M.: Enhancing compressive response of AZ31B using nano-Al2O3 and copper additions. J Alloys Compd 490, 382–387 (2010). doi: 10.1016/j.jallcom.2009.09.188 CrossRefGoogle Scholar
  79. 79.
    Sankaranarayanan S, Sabat RK, Jayalakshmi S, Satyam S; Manoj G (2014) Microstructural evolution and mechanical properties of Mg composites containing nano-B4C hybridized micro-Ti particulates. Mater Chem Phys 143:1178–1190Google Scholar
  80. 80.
    Hu, B., Peng, L., Powell, B.R., et al.: Interfacial and fracture behavior of short-fibers reinforced AE44 based magnesium matrix composites. J Alloys Compd 504, 527–534 (2010). doi: 10.1016/j.jallcom.2010.05.155 CrossRefGoogle Scholar
  81. 81.
    Purazrang, K., Abachi, P., Kainer, K.U.: Investigation of the mechanical behaviour of magnesium composites. Composites 25, 296–302 (1994). doi: 10.1016/0010-4361(94)90222-4 CrossRefGoogle Scholar
  82. 82.
    Zheng, M.Y., Wu, K., Liang, M., et al.: The effect of thermal exposure on the interface and mechanical properties of Al18B4O33w/AZ91 magnesium matrix composite. Mater Sci Eng A 372, 66–74 (2004). doi: 10.1016/j.msea.2003.09.085 CrossRefGoogle Scholar
  83. 83.
    Chen, S.H., Jin, P.P., Schumacher, G., Wanderka, N.: Microstructure and interface characterization of a cast Mg2B2O5 whisker reinforced AZ91D magnesium alloy composite. Compos Sci Technol 70, 123–129 (2010). doi: 10.1016/j.compscitech.2009.09.015 CrossRefGoogle Scholar
  84. 84.
    Zheng, M., Wu, K., Liang, H., et al.: Microstructure and mechanical properties of aluminum borate whisker-reinforced magnesium matrix composites. Mater Lett 57, 558–564 (2002)CrossRefGoogle Scholar
  85. 85.
    Zheng, M., Wu, K., Yao, C.: Effect of interfacial reaction on mechanical behavior of SiCw/AZ91 magnesium matrix composites. Mater Sci Eng A 318, 50–56 (2001). doi: 10.1016/S0921-5093(01)01338-7 CrossRefGoogle Scholar
  86. 86.
    Gu, J., Zhang, X., Gu, M.: Mechanical properties and damping capacity of (SiCp + Al2O3 · SiO2f)/Mg hybrid metal matrix composite. J Alloys Compd 385, 104–108 (2004). doi: 10.1016/j.jallcom.2004.04.106 CrossRefGoogle Scholar
  87. 87.
    Gu, X., Zhou, W., Zheng, Y., et al.: Microstructure, mechanical property, bio-corrosion and cytotoxicity evaluations of Mg/HA composites. Mater Sci Eng C 30, 827–832 (2010). doi: 10.1016/j.msec.2010.03.016 CrossRefGoogle Scholar
  88. 88.
    Towle, D.F.C.: Effect of reinforcement architecture on mechanical properties of a short fibre/magnesium RZ5 MMC manufactured by preform infiltration. Mat Sci Eng A 188, 153–158 (1994)CrossRefGoogle Scholar
  89. 89.
    Lianxi, H., Erde, W.: Fabrication and mechanical properties of SiCw/ZK51A magnesium matrix composite by two-step squeeze casting. Mater Sci Eng A 278, 267–271 (2000). doi: 10.1016/S0921-5093(99)00608-5 CrossRefGoogle Scholar
  90. 90.
    Zhang, X., Zhang, D., Wu, R., et al.: Mechanical properties and damping capacity of (SiCw+B4Cp)/ZK60A Mg alloy matrix composite. Scr Mater 37, 1631–1635 (1997)CrossRefGoogle Scholar
  91. 91.
    Chen, L.Y., Peng, J.Y., Xu, J.Q., et al.: Achieving uniform distribution and dispersion of a high percentage of nanoparticles in metal matrix nanocomposites by solidification processing. Scr Mater 69, 634–637 (2013). doi: 10.1016/j.scriptamat.2013.07.016 CrossRefGoogle Scholar
  92. 92.
    Miller, W.S., Humphreys, F.: Strengthening mechanisms in particulate metal matrix composites. Scr Metall Mater 25, 33–38 (1991)CrossRefGoogle Scholar
  93. 93.
    Dieringa, H.: Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: a review. J Mater Sci 46, 289–306 (2010). doi: 10.1007/s10853-010-5010-6 CrossRefGoogle Scholar
  94. 94.
    Dieter, G.E.: Mechanical metallurgy. McGraw-Hill, London (1986)Google Scholar
  95. 95.
    Zhang, Z., Chen, D.: Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength. Scr Mater 54, 1321–1326 (2006). doi: 10.1016/j.scriptamat.2005.12.017 CrossRefGoogle Scholar
  96. 96.
    Arsenault, R.J., Fisher, R.: Microstructure of fiber and particulate SiC in 6061 Al composites. Scirpta Metall 17, 67–71 (1983)CrossRefGoogle Scholar
  97. 97.
    Brown, L.M., Stobbs, W.M.: The work-hardening of copper-silica v. equilibrium plastic relaxation by secondary dislocations. Philos Mag 34, 351–372 (1976)CrossRefGoogle Scholar
  98. 98.
    Prewo, K.M.: On the strength of discontinuous silicon carbide reinforced aluminium composites. Scirpta Metall 20, 43–48 (1986)CrossRefGoogle Scholar
  99. 99.
    Ferguson, J.B., Sheykh-Jaberi, F., Kim, C.-S., et al.: On the strength and strain to failure in particle-reinforced magnesium metal-matrix nanocomposites (Mg MMNCs). Mater Sci Eng A 558, 193–204 (2012). doi: 10.1016/j.msea.2012.07.111 CrossRefGoogle Scholar
  100. 100.
    Reed-Hill RE (1973) Role of deformation twinning in determining the mechanical properties of metals: In The Inhomogeneity of Plastic Deformation. ASM Int Mater Park OH, USA, 285Google Scholar
  101. 101.
    Knezevic, M., Levinson, A., Harris, R., et al.: Deformation twinning in AZ31: Influence on strain hardening and texture evolution. Acta Mater. 58, 6230–6242 (2010). doi: 10.1016/j.actamat.2010.07.041 CrossRefGoogle Scholar
  102. 102.
    Agnew, S.R., Mehrotra, P., Lillo, T.M., et al.: Texture evolution of five wrought magnesium alloys during route A equal channel angular extrusion: Experiments and simulations. Acta Mater 53, 3135–3146 (2005). doi: 10.1016/j.actamat.2005.02.019 CrossRefGoogle Scholar
  103. 103.
    Wang, Y.N., Huang, J.C.: Texture analysis in hexagonal materials. Mater Chem Phys 81, 11–26 (2003). doi: 10.1016/S0254-0584(03)00168-8 CrossRefGoogle Scholar
  104. 104.
    Barnett, M.R.: Twinning and the ductility of magnesium alloys. Mater Sci Eng A 464, 1–7 (2007). doi: 10.1016/j.msea.2006.12.037 CrossRefGoogle Scholar
  105. 105.
    Kleiner, S., Uggowitzer, P.J.: Mechanical anisotropy of extruded Mg–6% Al–1% Zn alloy. Mater Sci Eng A 379, 258–263 (2004). doi: 10.1016/j.msea.2004.02.020 CrossRefGoogle Scholar
  106. 106.
    Koike, J., Kobayashi, T., Mukai, T., et al.: The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. Acta Mater 51, 2055–2065 (2003). doi: 10.1016/S1359-6454(03)00005-3 CrossRefGoogle Scholar
  107. 107.
    Nie, J.F.: Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scr Mater 48, 1009–1015 (2003). doi: 10.1016/S1359-6462(02)00497-9 CrossRefGoogle Scholar
  108. 108.
    Kang, D.H., Park, S.S., Oh, Y.S., Kim, N.J.: Effect of nano-particles on the creep resistance of Mg–Sn based alloys. Mater Sci Eng A 449–451, 318–321 (2007). doi: 10.1016/j.msea.2006.02.332 CrossRefGoogle Scholar
  109. 109.
    Hassan, S.F., Gupta, M.: Effect of particulate size of Al2O3 reinforcement on microstructure and mechanical behavior of solidification processed elemental Mg. J Alloys Compd 419, 84–90 (2006). doi: 10.1016/j.jallcom.2005.10.005 CrossRefGoogle Scholar
  110. 110.
    Yin, S.M., Wang, C.H., Diao, Y.D., et al.: Influence of Grain Size and Texture on the Yield Asymmetry of Mg-3Al-1Zn Alloy. J Mater Sci Technol 27, 29–34 (2011). doi: 10.1016/S1005-0302(11)60021-2 CrossRefGoogle Scholar
  111. 111.
    Hassan, S.F., Tan, M.J., Gupta, M.: High-temperature tensile properties of Mg/Al2O3 nanocomposite. Mater Sci Eng A 486, 56–62 (2008). doi: 10.1016/j.msea.2007.08.045 CrossRefGoogle Scholar
  112. 112.
    Nie, K.B., Wang, X.J., Xu, L., et al.: Effect of hot extrusion on microstructures and mechanical properties of SiC nanoparticles reinforced magnesium matrix composite. J Alloys Compd 512, 355–360 (2012). doi: 10.1016/j.jallcom.2011.09.099 CrossRefGoogle Scholar
  113. 113.
    Nie, K.B., Wang, X.J., Xu, L., et al.: Influence of extrusion temperature and process parameter on microstructures and tensile properties of a particulate reinforced magnesium matrix nanocomposite. Mater Des 36, 199–205 (2012). doi: 10.1016/j.matdes.2011.11.020 CrossRefGoogle Scholar
  114. 114.
    Srinivasan, M., Loganathan, C., Narayanasamy, R., et al.: Study on hot deformation behavior and microstructure evolution of cast-extruded AZ31B magnesium alloy and nanocomposite using processing map. Mater Des 47, 449–455 (2013). doi: 10.1016/j.matdes.2012.11.028 CrossRefGoogle Scholar
  115. 115.
    Sankaranarayanan, S., Jayalakshmi, S., Gupta, M.: Effect of nano-Al2O3 addition and heat treatment on the microstructure and mechanical properties of Mg-(5.6Ti+3Al) composite. Mater Charact 75, 150–164 (2013). doi: 10.1016/j.matchar.2012.10.005 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd 2017

Authors and Affiliations

  • Lorella Ceschini
    • 1
  • Arne Dahle
    • 2
  • Manoj Gupta
    • 3
  • Anders Eric Wollmar Jarfors
    • 4
  • S. Jayalakshmi
    • 5
  • Alessandro Morri
    • 6
  • Fabio Rotundo
    • 7
  • Stefania Toschi
    • 8
  • R. Arvind Singh
    • 9
  1. 1.Department of Industrial Engineering (DIN)Alma Mater Studiorum–University of BolognaBolognaItaly
  2. 2.School of EngineeringJönköping UniversityJönköpingSweden
  3. 3.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore
  4. 4.School of EngineeringJönköping UniversityJönköpingSweden
  5. 5.Department of Mechanical EngineeringBannari Amman Institute of Technology (BIT)SathyamangalamIndia
  6. 6.Interdepartmental Center for Industrial Research-Advanced Mechanics and Materials (CIRI-MAM)Alma Mater Studiorum–University of BolognaBolognaItaly
  7. 7.Interdepartmental Center for Industrial Research-Advanced Mechanics and Materials (CIRI-MAM)Alma Mater Studiorum–University of BolognaBolognaItaly
  8. 8.Department of Industrial Engineering (DIN)Alma Mater Studiorum–University of BolognaBolognaItaly
  9. 9.Department of Aeronautical EngineeringBannari Amman Institute of Technology (BIT)SathyamangalamIndia

Personalised recommendations