Skip to main content

Role of PET-CT in Hepatobiliary Diseases

  • Chapter
  • First Online:
GI Surgery Annual

Part of the book series: GI Surgery Annual ((GISA,volume 23))

  • 601 Accesses

Abstract

Positron emission tomography (PET) in conjunction with computed tomography (CT) has an important role as a functional imaging technology in mainstream oncology. The advantage of PET-CT as a one-stop shop in the diagnosis, staging, and monitoring of response and recurrence in various carcinomas has led to an increase in requests for this imaging modality. The cornerstone of PET-CT currently is flurodeoxyglucose (18F-FDG), a fluorinated analog of glucose, which mirrors the phosphorylation of the glucose pathway, but gets trapped inside the cells, as it is incapable of being metabolized further. Cancer cells have a high level of glucose metabolic activity and this forms the basis for the use of 18F-FDG PET-CT in oncology. There is increasing evidence of the usefulness of PET-CT in the assessment of hepatobiliary and pancreatic masses. We review the role of PET-CT in the evaluation of benign and malignant hepatobiliary diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sacks A, Peller PJ, Surasi DS, Chatburn L, Mercier G, Subramaniam RM. Value of PET/CT in the Management of Liver Metastases, Part 1. AJR Am J Roentgenol. 2011;197:W256–9.

    Article  PubMed  Google Scholar 

  2. Delbeke D, Martin WH. Update of PET and PET/CT for hepatobiliary and pancreatic malignancies. HPB (Oxford). 2005;7:166–79.

    Article  Google Scholar 

  3. Lai DT, Fulham M, Stephen MS, Chu KM, Solomon M, Thompson JF, et al. The role of whole-body positron emission tomography with [18F]fluorodeoxyglucose in identifying operable colorectal cancer metastases to the liver. Arch Surg. 1996;131:703–7.

    Article  CAS  PubMed  Google Scholar 

  4. D’souza MM, Sharma R, Mondal A, Jaimini A, Tripathi M, Saw SK, et al. Prospective evaluation of CECT and 18F-FDG-PET/CT in detection of hepatic metastases. Nucl Med Commun. 2009;30:117–25.

    Article  PubMed  Google Scholar 

  5. Grassetto G, Fornasiero A, Bonciarelli G, Banti E, Rampin L, Marzola MC, et al. Additional value of FDG-PET/CT in management of ‘solitary’ liver metastases: preliminary results of a prospective multicenter study. Mol Imaging Biol. 2010;12:139–44.

    Article  PubMed  Google Scholar 

  6. Fernandez FG, Drebin JA, Linehan DC, Dehdashti F, Siegel BA, Strasberg SM. Five-year survival after resection of hepatic metastases from colorectal cancer in patients screened by positron emission tomography with F-18 fluorodeoxyglucose (FDG-PET. Ann Surg. 2004;240:438–47.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Veit P, Antoch G, Stergar H, Bockisch A, Forsting M, Kuehl H. Detection of residual tumor after radiofrequency ablation of liver metastasis with dual-modality PET/CT: initial results. Eur Radiol. 2006;16:80–7.

    Article  PubMed  Google Scholar 

  8. Vitola JV, Delbeke D, Meranze SG, Mazer MJ, Pinson CW. Positron emission tomography with F-18-fluorodeoxyglucose to evaluate the results of hepatic chemoembolization. Cancer. 1996;78:2216–22.

    Article  CAS  PubMed  Google Scholar 

  9. Torizuka T, Tamaki N, Inokuma T, Magata Y, Yonekura Y, Tanaka A, et al. Value of fluorine-18-FDG-PET to monitor hepatocellular carcinoma after interventional therapy. J Nucl Med. 1994;35:1965–9.

    CAS  PubMed  Google Scholar 

  10. Findlay M, Young H, Cunningham D, Iveson A, Cronin B, Hickish T, et al. Noninvasive monitoring of tumor metabolism using fluorodeoxyglucose and positron emission tomography in colorectal cancer liver metastases: correlation with tumor response to fluorouracil. J Clin Oncol. 1996;14:700–8.

    CAS  PubMed  Google Scholar 

  11. Langenhoff BS, Oyen WJG, Jager GJ, Strijk SP, Wobbes T, Corstens FHM, et al. Efficacy of fluorine-18-deoxyglucose positron emission tomography in detecting tumor recurrence after local ablative therapy for liver metastases: a prospective study. J Clin Oncol. 2002;20:4453–8.

    Article  CAS  PubMed  Google Scholar 

  12. Wong CO, Salem R, Raman S, Gates VL, Dworkin HJ. Evaluating 90Y-glass microsphere treatment response of unresectable colorectal liver metastases by [18F]FDG PET: a comparison with CT or MRI. Eur J Nucl Med Mol Imaging. 2002;29:815–20.

    Article  CAS  PubMed  Google Scholar 

  13. Salem N, MacLennan GT, Kuang Y, Anderson PW, Schomisch SJ, Tochkov IA, et al. Quantitative evaluation of 2-Deoxy-2[F-18]fluoro-d-glucose-positron emission tomography imaging on the Woodchuck Model of Hepatocellular Carcinoma with Histological Correlation. Mol Imaging Biol. 2007;9:135–43.

    Article  PubMed  Google Scholar 

  14. Lee JD, Yang WI, Park YN, Kim KS, Choi JS, Yun M, et al. Different glucose uptake and glycolytic mechanisms between hepatocellular carcinoma and intrahepatic mass-forming cholangiocarcinoma with increased (18)F-FDG uptake. J Nucl Med. 2005;46:1753–9.

    CAS  PubMed  Google Scholar 

  15. Sacks A, Peller PJ, Surasi DS, Chatburn L, Mercier G, Subramaniam RM. Value of PET/CT in the Management of Liver Metastases, Part 2. AJR Am J Roentgenol. 2011;197:W260–5.

    Article  PubMed  Google Scholar 

  16. Khan MA, Combs CS, Brunt EM, Lowe VJ, Wolverson MK, Solomon H, et al. Positron emission tomography scanning in the evaluation of hepatocellular carcinoma. J Hepatol. 2000;32:792–7.

    Article  CAS  PubMed  Google Scholar 

  17. Delbeke D, Martin WH, Sandler MP, Chapman WC, Wright JKJ, Pinson CW. Evaluation of benign vs malignant hepatic lesions with positron emission tomography. Arch Surg. 1998;133:510–5.

    Article  CAS  PubMed  Google Scholar 

  18. Bohm B, Voth M, Geoghegan J, Hellfritzsch H, Petrovich A, Scheele J, et al. Impact of positron emission tomography on strategy in liver resection for primary and secondary liver tumors. J Cancer Res Clin Oncol. 2004;130:266–72.

    Article  CAS  PubMed  Google Scholar 

  19. Wudel LJJ, Delbeke D, Morris D, Rice M, Washington MK, Shyr Y, et al. The role of [18F]fluorodeoxyglucose positron emission tomography imaging in the evaluation of hepatocellular carcinoma. Am Surg. 2003;69:117–24.

    PubMed  Google Scholar 

  20. Torizuka T, Tamaki N, Inokuma T, Magata Y, Sasayama S, Yonekura Y, et al. In vivo assessment of glucose metabolism in hepatocellular carcinoma with. J Nucl Med. 1995;36:1811–7.

    CAS  PubMed  Google Scholar 

  21. Chua SC, Groves AM, Kayani I, Menezes L, Gacinovic S, Du Y, et al. The impact of 18F-FDG PET/CT in patients with liver metastases. Eur J Nucl Med Mol Imaging. 2007;34:1906–14.

    Article  PubMed  Google Scholar 

  22. Sugiyama M, Sakahara H, Torizuka T, Kanno T, Nakamura F, Futatsubashi M, et al. 18F-FDG PET in the detection of extrahepatic metastases from hepatocellular carcinoma. J Gastroenterol. 2004;39:961–8.

    Article  CAS  PubMed  Google Scholar 

  23. Seo S, Hatano E, Higashi T, Hara T, Tada M, Tamaki N, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography predicts tumor differentiation, P-glycoprotein expression, and outcome after resection in hepatocellular carcinoma. Clin Cancer Res. 2007;13:427–33.

    Article  CAS  PubMed  Google Scholar 

  24. Dierckx R, Maes A, Peeters M, Van De Wiele C. FDG PET for monitoring response to local and locoregional therapy in HCC and liver metastases. Q J Nucl Med Mol Imaging. 2009;53:336–42.

    CAS  PubMed  Google Scholar 

  25. Anderson GS, Brinkmann F, Soulen MC, Alavi A, Zhuang H. FDG positron emission tomography in the surveillance of hepatic tumors treated with radiofrequency ablation. Clin Nucl Med. 2003;28:192–7.

    PubMed  Google Scholar 

  26. Paudyal B, Oriuchi N, Paudyal P, Tsushima Y, Iida Y, Higuchi T, et al. Early diagnosis of recurrent hepatocellular carcinoma with 18F-FDG PET after radiofrequency ablation therapy. Oncol Rep. 2007;18:1469–73.

    CAS  PubMed  Google Scholar 

  27. Zhao M, P-H W, Zeng Y-X, Zhang F-J, Huang J-H, Fan W-J, et al. Evaluating efficacy of transcatheter arterial chemo-embolization combined with radiofrequency ablation on patients with hepatocellular carcinoma by. Ai Zheng. 2005;24:1118–23.

    CAS  PubMed  Google Scholar 

  28. Paudyal B, Paudyal P, Oriuchi N, Tsushima Y, Nakajima T, Endo K. Clinical implication of glucose transport and metabolism evaluated by 18F-FDG PET in hepatocellular carcinoma. Int J Oncol. 2008;33:1047–54.

    CAS  PubMed  Google Scholar 

  29. Lee JW, Paeng JC, Kang KW, Kwon HW, Suh K-S, Chung J-K, et al. Prediction of tumor recurrence by 18F-FDG PET in liver transplantation for hepatocellular carcinoma. J Nucl Med. 2009;50:682–7.

    Article  PubMed  Google Scholar 

  30. Yamamoto Y, Nishiyama Y, Kameyama R, Okano K, Kashiwagi H, Deguchi A, et al. Detection of hepatocellular carcinoma using 11C-choline PET: comparison with 18F-FDG PET. J Nucl Med. 2008;49:1245–8.

    Article  PubMed  Google Scholar 

  31. Ho C, Chen S, Yeung DWC, Cheng TKC, Dual-tracer PET. CT imaging in evaluation of metastatic hepatocellular carcinoma. J Nucl Med. 2007;48:902–9.

    Article  CAS  PubMed  Google Scholar 

  32. Park J-W, Kim JH, Kim SK, Kang KW, Park KW, Choi J-I, et al. A prospective evaluation of 18F-FDG and 11C-acetate PET/CT for detection of primary and metastatic hepatocellular carcinoma. J Nucl Med. 2008;49:1912–21.

    Article  PubMed  Google Scholar 

  33. Kim JY, Kim M-H, Lee TY, Hwang CY, Kim JS, Yun S-C, et al. Clinical role of 18F-FDG PET-CT in suspected and potentially operable cholangiocarcinoma: a prospective study compared with conventional imaging. Am J Gastroenterol. 2008;103:1145–51.

    Article  PubMed  Google Scholar 

  34. Kluge R, Schmidt F, Caca K, Barthel H, Hesse S, Georgi P, et al. Positron emission tomography with [(18)F]fluoro-2-deoxy-D-glucose for diagnosis and staging of bile duct cancer. Hepatology. 2001;33:1029–35.

    Article  CAS  PubMed  Google Scholar 

  35. Jadvar H, Henderson RW, Conti PS. F-18]fluorodeoxyglucose positron emission tomography and positron emission tomography: computed tomography in recurrent and metastatic cholangiocarcinoma. J Comput Assist Tomogr. 2007;31:223–8.

    Article  PubMed  Google Scholar 

  36. Corvera CU, Blumgart LH, Akhurst T, DeMatteo RP, D’Angelica M, Fong Y, et al. 18F-fluorodeoxyglucose positron emission tomography influences management decisions in patients with biliary cancer. J Am Coll Surg. 2008;206:57–65.

    Article  PubMed  Google Scholar 

  37. Petrowsky H, Wildbrett P, Husarik DB, Hany TF, Tam S, Jochum W, et al. Impact of integrated positron emission tomography and computed tomography on staging and management of gallbladder cancer and cholangiocarcinoma. J Hepatol. 2006;45:43–50.

    Article  PubMed  Google Scholar 

  38. Anderson CD, Rice MH, Pinson CW, Chapman WC, Chari RS, Delbeke D. Fluorodeoxyglucose PET imaging in the evaluation of gallbladder carcinoma and cholangiocarcinoma. J Gastrointest Surg. 2004;8:90–7.

    Article  PubMed  Google Scholar 

  39. Seo S, Hatano E, Higashi T, Nakajima A, Nakamoto Y, Tada M, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography predicts lymph node metastasis, P-glycoprotein expression, and recurrence after resection in mass-forming intrahepatic cholangiocarcinoma. Surgery. 2008;143:769–77.

    Article  PubMed  Google Scholar 

  40. Miura F, Asano T, Amano H, Toyota N, Wada K, Kato K, et al. New prognostic factor influencing long-term survival of patients with advanced gallbladder carcinoma. Surgery. 2010;148:271–7.

    Article  PubMed  Google Scholar 

  41. Shukla PJ, Barreto SG, Arya S, Shrikhande SV, Hawaldar R, Purandare N, et al. Does PET-CT scan have a role prior to radical re-resection for incidental gallbladder cancer? HPB (Oxford). 2008;10:439–45.

    Article  Google Scholar 

  42. Oe A, Kawabe J, Torii K, Kawamura E, Higashiyama S, Kotani J, et al. Distinguishing benign from malignant gallbladder wall thickening using FDG-PET. Ann Nucl Med. 2006;20:699–703.

    Article  PubMed  Google Scholar 

  43. Lomis KD, Vitola JV, Delbeke D, Snodgrass SL, Chapman WC, Wright JK, et al. Recurrent gallbladder carcinoma at laparoscopy port sites diagnosed by positron emission tomography: implications for primary and radical second operations. Am Surg. 1997;63:341–5.

    CAS  PubMed  Google Scholar 

  44. Butte JM, Redondo F, Waugh E, Meneses M, Pruzzo R, Parada H, et al. The role of PET-CT in patients with incidental gallbladder cancer. HPB (Oxford). 2009;11:585–91.

    Article  Google Scholar 

  45. Kumar R, Sharma P, Kumari A, Halanaik D, Malhotra A. Role of 18F-FDG PET/CT in detecting recurrent gallbladder carcinoma. Clin Nucl Med. 2012;37:431–5.

    Article  PubMed  Google Scholar 

  46. Lemke A-J, Niehues SM, Hosten N, Amthauer H, Boehmig M, Stroszczynski C, et al. Retrospective digital image fusion of multidetector CT and 18F-FDG PET: clinical value in pancreatic lesions--a prospective study with 104 patients. J Nucl Med. 2004;45:1279–86.

    PubMed  Google Scholar 

  47. Bang S, Chung HW, Park SW, Chung JB, Yun M, Lee JD, et al. The clinical usefulness of 18-fluorodeoxyglucose positron emission tomography in the differential diagnosis, staging, and response evaluation after concurrent chemoradiotherapy for pancreatic cancer. J Clin Gastroenterol. 2006;40:923–9.

    Article  PubMed  Google Scholar 

  48. Heinrich S, Goerres GW, Schafer M, Sagmeister M, Bauerfeind P, Pestalozzi BC, et al. Positron emission tomography/computed tomography influences on the management of resectable pancreatic cancer and its cost-effectiveness. Ann Surg. 2005;242:235–43.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schick V, Franzius C, Beyna T, Oei ML, Schnekenburger J, Weckesser M, et al. Diagnostic impact of 18F-FDG PET-CT evaluating solid pancreatic lesions versus endosonography, endoscopic retrograde cholangio-pancreatography with intraductal ultrasonography and abdominal ultrasound. Eur J Nucl Med Mol Imaging. 2008;35:1775–85.

    Article  PubMed  Google Scholar 

  50. DeWitt J, Devereaux B, Chriswell M, McGreevy K, Howard T, Imperiale TF, et al. Comparison of endoscopic ultrasonography and multidetector computed tomography for detecting and staging pancreatic cancer. Ann Intern Med. 2004;141:753–63.

    Article  PubMed  Google Scholar 

  51. Mertz HR, Sechopoulos P, Delbeke D, Leach SD. EUS, PET, and CT scanning for evaluation of pancreatic adenocarcinoma. Gastrointest Endosc. 2000;52:367–71.

    Article  CAS  PubMed  Google Scholar 

  52. Sendler A, Avril N, Helmberger H, Stollfuss J, Weber W, Bengel F, et al. Preoperative evaluation of pancreatic masses with positron emission tomography using 18F-fluorodeoxyglucose: diagnostic limitations. World J Surg. 2000;24:1121–9.

    Article  CAS  PubMed  Google Scholar 

  53. Sperti C, Pasquali C, Chierichetti F, Liessi G, Ferlin G, Pedrazzoli S. Value of 18-fluorodeoxyglucose positron emission tomography in the management of patients with cystic tumors of the pancreas. Ann Surg. 2001;234:675–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yoshioka M, Sato T, Furuya T, Shibata S, Andoh H, Asanuma Y, et al. Role of positron emission tomography with 2-deoxy-2-[18F]fluoro-D-glucose in evaluating the effects of arterial infusion chemotherapy and radiotherapy on pancreatic cancer. J Gastroenterol. 2004;39:50–5.

    Article  PubMed  Google Scholar 

  55. Sperti C, Pasquali C, Bissoli S, Chierichetti F, Liessi G, Pedrazzoli S. Tumor relapse after pancreatic cancer resection is detected earlier by 18-FDG PET than by CT. J Gastrointest Surg. 2010;14:131–40.

    Article  PubMed  Google Scholar 

  56. Clark L, Perez-Tamayo RA, Hurwitz H, Branch S, Baillie J, Jowell P, et al. The role of positron emission tomography (PET scan) in the diagnosis and staging of pancreatic cancer. Gastroenterology. 1998;114:A1382–3.

    Article  Google Scholar 

  57. Rose DM, Delbeke D, Beauchamp RD, Chapman WC, Sandler MP, Sharp KW, et al. 18Fluorodeoxyglucose-positron emission tomography in the management of patients with suspected pancreatic cancer. Ann Surg. 1999;229:729–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Garcea G, Ong SL, Maddern GJ. The current role of PET-CT in the characterization of hepatobiliary malignancies. HPB (Oxford). 2009;11:4–17.

    Article  Google Scholar 

  59. Strobel K, Heinrich S, Bhure U, Soyka J, Veit-Haibach P, Pestalozzi BC, et al. Contrast-enhanced 18F-FDG PET/CT: 1-stop-shop imaging for assessing the resectability of pancreatic cancer. J Nucl Med. 2008;49:1408–13.

    Article  PubMed  Google Scholar 

  60. Garcea G, Doucas H, Steward WP, Dennison AR, Berry DP. Hypoxia and angiogenesis in pancreatic cancer. ANZ J Surg. 2006;76:830–42.

    Article  PubMed  Google Scholar 

  61. Higashi T, Saga T, Nakamoto Y, Ishimori T, Fujimoto K, Doi R, et al. Diagnosis of pancreatic cancer using fluorine-18 fluorodeoxyglucose positron emission tomography (FDG PET)—usefulness and limitations in ‘clinical reality’. Ann Nucl Med. 2003;17:261–79.

    Article  PubMed  Google Scholar 

  62. Casneuf V, Delrue L, Kelles A, Van Damme N, Van Huysse J, Berrevoet F, et al. Is combined 18F-fluorodeoxyglucose-positron emission tomography/computed tomography superior to positron emission tomography or computed tomography alone for diagnosis, staging and restaging of pancreatic lesions? Acta Gastroenterol Belg. 2007;70:331–8.

    PubMed  Google Scholar 

  63. Quon A, Chang ST, Chin F, Kamaya A, Dick DW, Loo BWJ, et al. Initial evaluation of 18F-fluorothymidine (FLT) PET/CT scanning for primary pancreatic cancer. Eur J Nucl Med Mol Imaging. 2008;35:527–31.

    Article  CAS  PubMed  Google Scholar 

  64. Castellucci P, Pou Ucha J, Fuccio C, Rubello D, Ambrosini V, Montini GC, et al. Incidence of increased 68Ga-DOTANOC uptake in the pancreatic head in a large series of extrapancreatic NET patients studied with sequential PET/CT. J Nucl Med. 2011;52:886–90.

    Article  PubMed  Google Scholar 

  65. Al-Ibraheem A, Bundschuh RA, Notni J, Buck A, Winter A, Wester H-J, et al. Focal uptake of 68Ga-DOTATOC in the pancreas: pathological or physiological correlate in patients with neuroendocrine tumours? Eur J Nucl Med Mol Imaging. 2011;38:2005–13.

    Article  CAS  PubMed  Google Scholar 

  66. Partelli S, Rinzivillo M, Maurizi A, Panzuto F, Salgarello M, Polenta V, et al. The role of combined Ga-DOTANOC and (18)FDG PET/CT in the management of patients with pancreatic neuroendocrine tumors. Neuroendocrinology. 2014;100:293–9.

    Article  CAS  PubMed  Google Scholar 

  67. Kurtaran A, Becherer A, Pfeffel F, Muller C, Traub T, Schmaljohann J, et al. 18F-fluorodeoxyglucose (FDG)-PET features of focal nodular hyperplasia (FNH) of the liver. Liver. 2000;20:487–90.

    Article  CAS  PubMed  Google Scholar 

  68. Ho C-L, SCH Y, Yeung DWC. 11C-acetate PET imaging in hepatocellular carcinoma and other liver masses. J Nucl Med. 2003;44:213–21.

    PubMed  Google Scholar 

  69. Son HB, Han CJ, Kim BI, Kim J, Jeong S-H, Kim YC, et al. Evaluation of various hepatic lesions with positron emission tomography. Taehan Kan Hakhoe Chi. 2002;8:472–80.

    PubMed  Google Scholar 

  70. Tan GJS, Berlangieri SU, Lee ST, AM S. FDG PET/CT in the liver: lesions mimicking malignancies. Abdom Imaging. 2014;39:187–95.

    Article  PubMed  Google Scholar 

  71. Gayed I, T V, Iyer R, Johnson M, Macapinlac H, Swanston N, et al. The role of 18F-FDG PET in staging and early prediction of response to therapy of recurrent gastrointestinal stromal tumors. J Nucl Med 2004;45:17–21. Erratum in. J Nucl Med. 2004;45:1803.

    Google Scholar 

  72. Rappeport ED, Loft A, Berthelsen AK, von der Recke P, Larsen PN, Mogensen AM, et al. Contrast-enhanced FDG-PET/CT vs. SPIO-enhanced MRI vs. FDG-PET vs. CT in patients with liver metastases from colorectal cancer: A prospective study with intraoperative confirmation. Acta Radiol. 2007;48:369–78.

    Article  CAS  PubMed  Google Scholar 

  73. Lubezky N, Metser U, Geva R, Nakache R, Shmueli E, Klausner JM, et al. The role and limitations of 18-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) scan and computerized tomography (CT) in restaging patients with hepatic colorectal metastases following neoadjuvant chemotherapy: Comparison with operative and pathological findings. J Gastrointest Surg. 2007;11:472–8.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kong G, Jackson C, Koh DM, Lewington V, Sharma B, Brown G, et al. The use of 18F-FDG PET/CT in colorectal liver metastases—comparison with CT and liver MRI. Eur J Nucl Med Mol Imaging. 2008;35:1323–9.

    Article  CAS  PubMed  Google Scholar 

  75. Okazumi S, Isono K, Enomoto K, Kikuchi T, Ozaki M, Yamamoto H, et al. Evaluation of liver tumors using fluorine-18-fluorodeoxyglucose PET: Characterization of tumor and assessment of effect of treatment. J Nucl Med. 1992;33:333–9.

    CAS  PubMed  Google Scholar 

  76. Talbot JN, Gutman F, Fartoux L, Grange JD, Ganne N, Kerrou K, et al. PET/CT in patients with hepatocellular carcinoma using [(18)F]fluorocholine: Preliminary comparison with [(18)F]FDG PET/CT. Eur J Nucl Med Mol Imaging. 2006;33:1285–9.

    Article  PubMed  Google Scholar 

  77. Reinhardt MJ, Strunk H, Gerhardt T, Roedel R, Jaeger U, Bucerius J, et al. Detection of Klatskins tumor in extrahepatic bile duct strictures using delayed 18F-FDG PET/CT: Preliminary results for 22 patient studies. J Nucl Med. 2005;46:1158–63.

    PubMed  Google Scholar 

  78. Kuker RA, Mesoloras G, Gulec SA. Optimization of FDG-PET/CT imaging protocol for evaluation of patients with primary and metastatic liver disease. Int Semin Surg Oncol. 2007;4:17.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Tann M, Sandrasegaran K, Jennings SG, Skandarajah A, McHenry L, Schmidt CM. Positron-emission tomography and computed tomography of cystic pancreatic masses. Clin Radiol. 2007;62:745–51.

    Article  CAS  PubMed  Google Scholar 

  80. Wieder H, Beer AJ, Poethko T, Meisetschlaeger G, Wester HJ, Rummeny E, et al. PET/CT with Gluc-Lys-([(18)F]FP)-TOCA: Correlation between uptake, size and arterial perfusion in somatostatin receptor positive lesions. Eur J Nucl Med Mol Imaging. 2008;35:264–71.

    Article  PubMed  Google Scholar 

  81. Seemann MD, Meisetschlaeger G, Gaa J, Rummeny EJ. Assessment of the extent of metastases of gastrointestinal carcinoid tumors using whole-body PET, CT, MRI, PET/CT and PET/MRI. Eur J Med Res. 2006;11:58–65.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Indian Association of Surgical Gastroenterology

About this chapter

Cite this chapter

Das, K.J., Kumar, R. (2017). Role of PET-CT in Hepatobiliary Diseases. In: Sahni, P., Pal, S. (eds) GI Surgery Annual. GI Surgery Annual, vol 23. Springer, Singapore. https://doi.org/10.1007/978-981-10-2678-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2678-2_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2677-5

  • Online ISBN: 978-981-10-2678-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics