3-Dimensional Classification and Visualization of Clouds Simulated by Cloud-Resolving Atmospheric General Circulation Model

  • Daisuke Matsuoka
  • Kazuyoshi Oouchi
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 645)


Cloud-resolving atmospheric general circulation models using large scale supercomputers reproduce realistic behavior of atmospheric field on a global scale. To understand the simulation result for scientists, visualizing individual clouds and their physical characteristics is necessary. In this study, we propose a new feature extraction and classification method of simulated clouds based on their 3-dimensional shape and physical properties. The results of applying the proposed method show the clouds’ distribution of a tropical cyclone during its generation, development and disappearance process, and the relation between cloud-forms and precipitation.


Visualization Atmospheric simulation Cloud Feature extraction Classification 



We are grateful to Dr. Miyakawa (University of Tokyo), Dr. Nakano (JAMSTEC) and the NICAM team for their data production and model development. This work is supported by KAKENHI (26700010) Grant-in-Aid for Young Scientists (A).


  1. 1.
    Ohfuchi, W., Nakamura, H., Yoshioka, M.K., Enomoto, T., Takaya, K., Peng, X., Yamane, S., Nishimura, T., Kurihara, Y., Ninomiya, K.: 10-km Mesh meso-scale resolving simulations of the global atmosphere on the earth simulator–preliminary outcomes of AFES (AGCM for the Earth Simulator). J. Earth Simul. 1, 8–34 (2004)Google Scholar
  2. 2.
    Tomita, S., Sato, M.: A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn. Res. 34(6), 357–400 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Sato, M., Tomita, H., Yashiro, H., Miura, H., Kodama, C., Seiki, T., Noda, A.T., Yamada, Y., Goto, D., Sawada, M., Miyoshi, T., Niwa, Y., Hara, M., Ohno, T., Iga, S., Arakawa, T., Inoue, T., Kubokawa, H.: The Non-hydrostatic icosahedral atmospheric model: description and development. Prog. Earth Planet. Sci. 1(18), 1–32 (2014)Google Scholar
  4. 4.
    Miura, H., Satoh, M., Nasuno, T., Noda, A.T., Oouchi, K.: A madden-julien oscillation event realistically simulated by a global cloud-resolving model. Science 318, 1763–1765 (2007)CrossRefGoogle Scholar
  5. 5.
    Nakano, M., Sawada, M., Nasuno, T., Satoh, M.: Intraseasonal variability and tropical cyclonenesis in the western north pacific simulated by a global nonhydrostatic atmospheric model. Geophys. Res. Lett. 42, 565–571 (2015)CrossRefGoogle Scholar
  6. 6.
    Karlsson, K.-G.: Development of an operational cloud classification model. Int. J. Remote Sens. 10, 687–693 (1989)CrossRefGoogle Scholar
  7. 7.
    Macías-Macías, M., García-Orellana, C.J., González-Velasco, H., Gallardo-Caballero, R.: ICA and GA feature extraction and selection for cloud classification. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds.) ICAPR 2005. LNCS, vol. 3686, pp. 488–496. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Zibert, M.I., Derrien, M., Le Gleau, H.: Automatic cloud classification by supervised learning on SEVIRI data using support vector machines method. In: The 2005 EUMETSAT Meteorological Satellite Conference, pp. 188–192 (2006)Google Scholar
  9. 9.
    Kazantzidis, R., Tzoumanikas, P., Bais, A.F., Fotopoulos, S., EconomouU, G.: Equipment and methodologies for cloud detection and classification: a review. Sol. Energy 95, 392–430 (2012)Google Scholar
  10. 10.
    Heinle, A., Macke, A., Srivastav, A.: Automatic cloud classification of whole sky images. Atmos. Measur. Tech. 3, 557–567 (2010)CrossRefGoogle Scholar
  11. 11.
    Liu, S., Zhang, Z., Mei, X.: Ground-based cloud classification using weighted local binary patterns. J. Appl. Remote Sens. 9(1), 095062 (2015)CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Sinkevich, A.A., Krauss, T.W., Stepanenko, V.D., Dovgalyuk, Y.A., Veremey, N.E., Krov, A.B., Pivovarova, L.V.: Study of dynamics of the cumulonimbus anvil of large vertical extent. Russ. Meteorol. Hydrol. 34(12), 775–783 (2010)CrossRefGoogle Scholar
  14. 14.
    Houze, R.A.: Clouds in tropical cyclones. Mon. Weather Rev. 138, 293–344 (2010)CrossRefGoogle Scholar
  15. 15.
    Oouchi, K., Fudeyasu, H. (eds.): Cyclones: Formation, Triggers and Control. NOVA Publishers, New York (2012)Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Japan Agency for Marine-Earth Science and Technology (JAMSTEC)YokohamaJapan

Personalised recommendations