Skip to main content

Classifying \(A_\mathfrak {q}(\lambda )\) Modules by Their Dirac Cohomology

  • Conference paper
  • First Online:
Lie Theory and Its Applications in Physics (LT 2015)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 191))

Included in the following conference series:

  • 1242 Accesses

Abstract

This talk is a preliminary report on the joint work with Jing-Song Huang and David Vogan. The main question we address is: to what extent is an \(A_\mathfrak {q}(\lambda )\) module determined by its Dirac cohomology? The focus of the talk is not so much on explaining this question and its answer, which are mentioned briefly at the end. Rather, the focus is on introducing the whole setting and giving some background material about representation theory, especially the notion of Dirac cohomology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Alekseev, E. Meinrenken, Lie theory and the Chern-Weil homomorphism, Ann. Sci. Ecole. Norm. Sup. 38 (2005), 303–338.

    Google Scholar 

  2. D. Barbasch, P. Pandžić, Dirac cohomology and unipotent representations of complex groups, in Noncommutative Geometry and Global Analysis, A. Connes, A. Gorokhovsky, M. Lesch, M. Pflaum, B. Rangipour (eds), Contemporary Mathematics vol. 546, American Mathematical Society, 2011, pp. 1–22.

    Google Scholar 

  3. D. Barbasch, P. Pandžić, Dirac cohomology of unipotent representations of \(Sp(2n,{\mathbb{R}})\) and \(U(p,q)\), J. Lie Theory 25 (2015), no. 1, 185–213.

    Google Scholar 

  4. D. Barbasch, D. Ciubotaru, P. Trapa, Dirac cohomology for graded affine Hecke algebras, Acta Math. 209 (2012), no. 2, 197–227.

    Google Scholar 

  5. S. Goette, Equivariant \(\eta \)-invariants on homogeneous spaces, Math. Z. 232 (1998), 1–42.

    Google Scholar 

  6. J.-S. Huang, P. Pandžić, Dirac cohomology, unitary representations and a proof of a conjecture of Vogan, J. Amer. Math. Soc. 15 (2002), 185–202.

    Google Scholar 

  7. J.-S. Huang, P. Pandžić, Dirac cohomology for Lie superalgebras, Transform. Groups 10 (2005), 201–209.

    Google Scholar 

  8. J.-S. Huang, P. Pandžić, Dirac Operators in Representation Theory, Mathematics: Theory and Applications, Birkhäuser, 2006.

    Google Scholar 

  9. J.-S. Huang, P. Pandžić, D. Renard, Dirac operators and Lie algebra cohomology, Representation Theory 10 (2006), 299–313.

    Google Scholar 

  10. J.-S. Huang, Y.-F. Kang, P. Pandžić, Dirac cohomology of some Harish-Chandra modules, Transform. Groups 14 (2009), 163–173.

    Google Scholar 

  11. J.-S. Huang, P. Pandžić, V. Protsak, Dirac cohomology of Wallach representations, Pacific J. Math. 250 (2011), no. 1, 163–190.

    Google Scholar 

  12. J.-S. Huang, P. Pandžić, F. Zhu, Dirac cohomology, K-characters and branching laws, Amer. J. Math. 135 (2013), no.5, 1253–1269.

    Google Scholar 

  13. J.-S. Huang, P. Pandžić, D.A. Vogan, Jr., Classifying \(A_\mathfrak{q}(\lambda )\) modules by their Dirac cohomology, in preparation.

    Google Scholar 

  14. V.P. Kac, P. Möseneder Frajria, P. Papi, Multiplets of representations, twisted Dirac operators and Vogan’s conjecture in affine setting, Adv. Math. 217 (2008), 2485–2562.

    Google Scholar 

  15. A.W. Knapp, D.A. Vogan, Jr., Cohomological Induction and Unitary Representations, Princeton University Press, 1995.

    Google Scholar 

  16. B. Kostant, A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups, Duke Math. J. 100 (1999), 447–501.

    Google Scholar 

  17. B. Kostant, Dirac cohomology for the cubic Dirac operator, Studies in Memory of Issai Schur, Progress in Mathematics, Vol. 210 (2003), 69–93.

    Google Scholar 

  18. S. Kumar, Induction functor in non-commutative equivariant cohomology and Dirac cohomology, J. Algebra 291 (2005), 187–207.

    Google Scholar 

  19. S. Mehdi, P. Pandžić, D.A. Vogan, Jr., Translation principle for Dirac index, preprint, 2014, to appear in Amer. J. Math.

    Google Scholar 

  20. P. Pandžić, D. Renard, Dirac induction for Harish-Chandra modules, J. Lie Theory 20 (2010), no. 4, 617-641.

    Google Scholar 

  21. R. Parthasarathy, Dirac operator and the discrete series, Ann. of Math. 96 (1972), 1–30.

    Google Scholar 

  22. R. Parthasarathy, Criteria for the unitarizability of some highest weight modules, Proc. Indian Acad. Sci. 89 (1980), 1–24.

    Google Scholar 

  23. A. Prlić, Algebraic Dirac induction for nonholomorphic discrete series of \(SU(2,1)\), J. Lie Theory 26 (2016), no. 3, 889–910.

    Google Scholar 

  24. A. Prlić, \(K\)invariants in the algebra \(U(\mathfrak{g}) \otimes C(\mathfrak{p})\) for the group \(SU(2,1)\), to appear in Glas. Mat. Ser. III 50(70) (2015), no. 2, 397–414.

    Google Scholar 

  25. S.A. Salamanca-Riba, On the unitary dual of real reductive Lie groups and the \(A_\mathfrak{q}(\lambda )\) modules: the strongly regular case, Duke Math. J. 96 (1998), 521–546.

    Google Scholar 

  26. D.A. Vogan, Jr., Representations of Real Reductive Groups, Birkhäsuer, 1981.

    Google Scholar 

  27. D.A. Vogan, Jr., Unitarizability of certain series of representations, Ann. of Math. 120 (1984), 141–187.

    Google Scholar 

  28. D.A. Vogan, Jr., Dirac operators and unitary representations, 3 talks at MIT Lie groups seminar, Fall 1997.

    Google Scholar 

  29. D.A. Vogan, Jr., and G.J. Zuckerman, Unitary representations with non-zero cohomology, Comp. Math. 53 (1984), 51–90.

    Google Scholar 

Download references

Acknowledgements

The author was supported by grant no. 4176 of the Croatian Science Foundation and by the Center of Excellence QuantiXLie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavle Pandžić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Pandžić, P. (2016). Classifying \(A_\mathfrak {q}(\lambda )\) Modules by Their Dirac Cohomology. In: Dobrev, V. (eds) Lie Theory and Its Applications in Physics. LT 2015. Springer Proceedings in Mathematics & Statistics, vol 191. Springer, Singapore. https://doi.org/10.1007/978-981-10-2636-2_27

Download citation

Publish with us

Policies and ethics