Skip to main content

Thermoelectric Characteristics of \({\mathbb Z}_k\) Parafermion Coulomb Islands

  • Conference paper
  • First Online:
  • 1223 Accesses

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 191))

Abstract

Using the explicit rational conformal field theory partition functions for the \({\mathbb Z}_k\) parafermion quantum Hall states on a disk we compute numerically the thermoelectric power factor for Coulomb-blockaded islands at finite temperature. We demonstrate that the power factor is rather sensitive to the neutral degrees of freedom and could eventually be used to distinguish experimentally between different quantum Hall states having identical electric properties. This might help us to confirm whether non-Abelian quasiparticles, such as the Fibonacci anyons, are indeed present in the experimentally observed quantum Hall states.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Ahlbrecht, L. S. Georgiev, and R. F. Werner, “Implementation of Clifford gates in the Ising-anyon topological quantum computer,” Phys. Rev. A 79 (2009) 032311, arXiv:0812.2338.

  2. P. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal Field Theory. Springer–Verlag, New York, 1997.

    Google Scholar 

  3. M. Nielsen and I. Chuang, Quantum Computation and Quantum Information. Cambridge University Press, 2000.

    Google Scholar 

  4. S. D. Sarma, M. Freedman, C. N. andStiven H. Simon, and A. Stern, “Non-Abelian anyons and topological quantum computation,” Rev. Mod. Phys. 80 (2008) 1083, arXiv:0707.1889.

  5. L. S. Georgiev, “Ultimate braid-group generators for exchanges of Ising anyons,” J. Phys. A: Math. Theor. 42 (2009) 225203, arXiv:0812.2334.

    Google Scholar 

  6. N. Bonesteel, L. Hormozi, G. Zikos, and S. Simon, “Braid topologies for quantum computation,” Phys. Rev. Lett. 95 (2005) 140503.

    Google Scholar 

  7. A. Cappelli, L. S. Georgiev, and I. T. Todorov, “Parafermion Hall states from coset projections of Abelian conformal theories,” Nucl. Phys. B 599 [FS] (2001) 499–530, arXiv:hep-th/0009229.

    Google Scholar 

  8. L. S. Georgiev, “Thermopower and thermoelectric power factor of \({{\mathbb{Z}}}_k\) parafermion quantum dots,” Nucl. Phys. B 899 (2015) 289–311, arXiv:1505.02538.

  9. L. S. Georgiev, “Thermopower in the Coulomb blockade regime for Laughlin quantum dots,” in Lie Theory and Its Applications in Physics,, V. Dobrev, ed., Springer Proceedings in Mathematics & Statistics 111, pp. 279–289. 2014. arXiv:1406.5592. Proceedings of the 10-th International Workshop “Lie Theory and Its Applications in Physics”, 17–23 June 2013, Varna, Bulgaria.

  10. J. Fröhlich, U. M. Studer, and E. Thiran, “A classification of quantum Hall fluids,” J. Stat. Phys. 86 (1997) 821, arXiv:cond-mat/9503113.

    Google Scholar 

  11. A. Cappelli and G. R. Zemba, “Modular invariant partition functions in the quantum Hall effect,” Nucl. Phys. B490 (1997) 595, arXiv:hep-th/9605127.

    Google Scholar 

  12. L. S. Georgiev, “A universal conformal field theory approach to the chiral persistent currents in the mesoscopic fractional quantum Hall states,” Nucl. Phys. B 707 (2005) 347–380, arXiv:hep-th/0408052.

    Google Scholar 

  13. L. S. Georgiev, “Thermoelectric properties of Coulomb-blockaded fractional quantum Hall islands,” Nucl. Phys. B 894 (2015) 284–306, arXiv:1406.6177.

    Google Scholar 

  14. K. Matveev, “Thermopower in quantum dots,” Lecture Notes in Physics LNP 547 (1999) 3–15.

    Google Scholar 

  15. L. S. Georgiev, “Thermal broadening of the Coulomb blockade peaks in quantum Hall interferometers,” EPL 91 (2010) 41001, arXiv:1003.4871.

  16. P. Bonderson, C. Nayak, and K. Shtengel, “Coulomb blockade doppelgangers in quantum Hall states,” Phys. Rev. B 81 (2010) 165308, arXiv:0909.1056.

  17. W. Pan, J. S. Xia, H. L. Stormer, D. C. Tsui, C. Vicente, E. D. Adams, N. S. Sullivan, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, “Experimental studies of the fractional quantum hall effect in the first excited landau level,” Phys. Rev. B 77 (Feb, 2008) 075307.

    Google Scholar 

  18. I. Gurman, R. Sabo, M. Heiblum, V. Umansky, and D. Mahalu, “Extracting net current from an upstream neutral mode in the fractional quantum Hall regime,” Nature Communications 3 (2012) 1289, arXiv:1205.2945.

Download references

Acknowledgements

I thank Andrea Cappelli, Guillermo Zemba and Ady Stern for many helpful discussions. This work has been partially supported by the Alexander von Humboldt Foundation under the Return Fellowship and Equipment Subsidies Programs and by the Bulgarian Science Fund under Contract No. DFNI-E 01/2 and DFNI-T 02/6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lachezar S. Georgiev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Georgiev, L.S. (2016). Thermoelectric Characteristics of \({\mathbb Z}_k\) Parafermion Coulomb Islands. In: Dobrev, V. (eds) Lie Theory and Its Applications in Physics. LT 2015. Springer Proceedings in Mathematics & Statistics, vol 191. Springer, Singapore. https://doi.org/10.1007/978-981-10-2636-2_24

Download citation

Publish with us

Policies and ethics