Skip to main content

Anatomy and Physiology of the Crystalline Lens

  • Chapter
  • First Online:
Pediatric Lens Diseases

Abstract

Understanding the anatomical structure and normal physiology of the lens is essential for understanding the pathogenesis of lens diseases. The anatomical structure of the pediatric lens is still developing after birth, including the size, weight and volume, the thickness and elasticity of the lens capsule, the density and proliferation rate of lens epithelial cells, the number of zonular fibers, the relationship between the posterior lens capsule and the anterior vitreous body, and so on. This chapter discusses how the anatomy and physiology of the lens change with age, the maintenance of lens transparency, and its associated factors, as well as the role of the lens in the refraction and accommodation of the eye, all of which will provide useful information for deciding on the appropriate therapeutic regimen for pediatric patients with lens diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iribarren R. Crystalline lens and refractive development. Prog Retin Eye Res. 2015;47:86–106.

    Article  PubMed  Google Scholar 

  2. Augusteyn RC, Nankivil D, Mohamed A, et al. Human ocular biometry. Exp Eye Res. 2012;102:70–5.

    Article  CAS  PubMed  Google Scholar 

  3. Augusteyn RC. On the growth and internal structure of the human lens. Exp Eye Res. 2010;90(6):643–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Augusteyn RC. Growth of the human eye lens. Mol Vis. 2007;13:252–7.

    PubMed  PubMed Central  Google Scholar 

  5. Brown NP, Bron AJ. Lens disorders: a clinical manual of cataract diagnosis. 3rd ed. Oxford: Butterworth-Heinemann; 1996. p. 19–23.

    Google Scholar 

  6. Bours J, Födisch HJ, Hockwin O. Age-related changes in water and crystallin content of the fetal and adult human lens, demonstrated by a microsectioning technique. Ophthalmic Res. 1987;19(4):235–9.

    Article  CAS  PubMed  Google Scholar 

  7. Scammon RE, Hesdorffer MB. Growth in mass and volume of the human lens in postnatal life. Arch Ophthalmol. 1937;17:104–12.

    Article  Google Scholar 

  8. Broekhuyse RM. Phospholipids in tissues of the eye. 3. Composition and metabolism of phospholipids in human lens in relation to age and cataract formation. Biochim Biophys Acta. 1969;187(3):354–65.

    Article  CAS  PubMed  Google Scholar 

  9. Clapp CA. A communication upon the weight of infant’s lenses and their solids. Arch Ophthalmol. 1913;42:618–24.

    Google Scholar 

  10. Smith P. Diseases of crystalline lens and capsule. 1. On the growth of the crystalline lens. Trans Ophthalmol Soc UK. 1883;3:79–99.

    Google Scholar 

  11. Dische Z, Zelmenis G. The content and structural characteristics of the collagenous protein of rabbit lens capsules at different ages. Invest Ophthalmol. 1965;4:174–80.

    CAS  PubMed  Google Scholar 

  12. Parmigiani CM, McAvoy JW. A morphometric analysis of the development of the rat lens capsule. Curr Eye Res. 1989;8(12):1271–7.

    Article  CAS  PubMed  Google Scholar 

  13. Fox J. Anatomy of the lens. Nurs Mirror. 1984;158(18):31–5.

    CAS  PubMed  Google Scholar 

  14. Boulton M, Albon J. Stem cells in the eye. Int J Biochem Cell Biol. 2004;36:643–57.

    Article  CAS  PubMed  Google Scholar 

  15. Francois J, Victoria-Troncoso V. Histology of the epithelium of the normal and cataractous lens. Ophthalmologica. 1978;177(3):168–74.

    Article  CAS  PubMed  Google Scholar 

  16. Vrensen GF. Aging of the human eye lens-a morphological point of view. Comp Biochem Physiol A Physiol. 1995;111(4):519–32.

    Article  CAS  PubMed  Google Scholar 

  17. Wallentin N, Wickstrom K, Lundberg C. Effect of cataract surgery on aqueous TGF-beta and lens epithelial cell proliferation. Invest Ophthalmol Vis Sci. 1998;39(8):1410–8.

    CAS  PubMed  Google Scholar 

  18. Meacock WR, Spalton DJ, Stanford MR. Role of cytokines in the pathogenesis of posterior capsule opacification. Br J Ophthalmol. 2000;84(3):332–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Duncan G. Lens cell growth and posterior capsule opacification: in vivo and in vitro observations. Br J Ophthalmol. 1998;82(10):1102–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Streeten BW. The nature of the ocular zonule. Trans Am Ophthalmol Soc. 1982;80:823–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Streeten BW, Swann DA, Licari PA, et al. The protein composition of the ocular zonules. Invest Ophthalmol Vis Sci. 1983;24(1):119–23.

    CAS  PubMed  Google Scholar 

  22. Streeten BW, Licari PA. The zonules and the elastic microfibrillar system in the ciliary body. Invest Ophthalmol Vis Sci. 1983;24(6):667–81.

    CAS  PubMed  Google Scholar 

  23. Mackool RJ, Chhatiawala H. Pediatric cataract surgery and intraocular lens implantation: a new technique for preventing or excising postoperative secondary membranes. J Cataract Refract Surg. 1991;17(1):62–6.

    Article  CAS  PubMed  Google Scholar 

  24. Trokel S. The physical basis for transparency of the crystalline lens. Invest Ophthalmol. 1962;1:493–501.

    CAS  PubMed  Google Scholar 

  25. Lo WK, Biswas SK, Brako L, et al. Aquaporin-0 targets interlocking domains to control the integrity and transparency of the eye lens. Invest Ophthalmol Vis Sci. 2014;55(3):1202–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cvekl A, Ashery-Padan R. The cellular and molecular mechanisms of vertebrate lens development. Development. 2014;141(23):4432–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jaenicke R, Slingsby C. Lens crystallins and their microbial homologs: structure, stability, and function. Crit Rev Biochem Mol Biol. 2001;36(5):435–99.

    Article  CAS  PubMed  Google Scholar 

  28. Bassnett S. On the mechanism of organelle degradation in the vertebrate lens. Exp Eye Res. 2009;88(2):133–9.

    Article  CAS  PubMed  Google Scholar 

  29. Rhodes JD, Sanderson J. The mechanisms of calcium homeostasis and signalling in the lens. Exp Eye Res. 2009;88(2):226–34.

    Article  CAS  PubMed  Google Scholar 

  30. Lee DB. Error tolerance in helmholtzian accommodation. Ophthalmology. 2002;109(9):1589–90.

    Article  PubMed  Google Scholar 

  31. Schachar RA. Cause and treatment of presbyopia with a method for increasing the amplitude of accommodation. Ann Ophthalmol. 1992;24(12):445–7, 452.

    CAS  PubMed  Google Scholar 

  32. Schachar RA, Cudmore DP, Black TD. Experimental support for Schachar’s hypothesis of accommodation. Ann Ophthalmol. 1993;25(11):404–9.

    CAS  PubMed  Google Scholar 

  33. Kirkwood BJ, Kirkwood RA. Accommodation and presbyopia. Insight. 2013;38(3):5–8.

    PubMed  Google Scholar 

  34. Sliney DH. How light reaches the eye and its components. Int J Toxicol. 2002;21(6):501–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weirong Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Chen, W., Tan, X., Chen, X. (2017). Anatomy and Physiology of the Crystalline Lens. In: Liu, Y. (eds) Pediatric Lens Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-10-2627-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2627-0_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2626-3

  • Online ISBN: 978-981-10-2627-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics