Pediatric Cataract Surgery in Microphthalmic Eyes

  • Xinyu ZhangEmail author
  • Xiaojian Zhong
  • Xiaoyun Chen


Congenital microphthalmos (CM) is caused by disrupted eye growth during embryonic development, which is characterized by shorter-than-normal axial length of the globe. There is a lack of consensus on the classification of microphthalmos. An anatomical classification consisting of three categories may be useful. Manifestations of CM in children differ from those in adults and they require unique management strategies. More specifically, delayed timing of IOL implantation and the avoidance of piggyback IOL implantation are recommended in these cases. Cataract extraction in children with CM requires specific techniques and is associated with an increased risk of posterior synechiae and glaucoma. This chapter elaborates on the classification and manifestations, surgical indications, preoperative evaluation, calculation of intraocular lens power, surgical techniques, and prevention and management of surgical complications.


Anterior Chamber Cataract Surgery Axial Length Cataract Extraction Anterior Chamber Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Weiss AH, Kousseff BG, Ross EA, et al. Simple microphthalmos. Arch Ophthalmol. 1989;107(11):1625–30.CrossRefPubMedGoogle Scholar
  2. 2.
    Weiss AH, Kousseff BG, Ross EA, et al. Complex microphthalmos. Arch Ophthalmol. 1989;107(11):1619–24.CrossRefPubMedGoogle Scholar
  3. 3.
    Vasavada VA, Dixit NV, Ravat FA, et al. Intraoperative performance and postoperative outcomes of cataract surgery in infant eyes with microphthalmos. J Cataract Refract Surg. 2009;35(3):519–28.CrossRefPubMedGoogle Scholar
  4. 4.
    Praveen MR, Vasavada AR, Shah SK, et al. Long-term postoperative outcomes after bilateral congenital cataract surgery in eyes with microphthalmos. J Cataract Refract Surg. 2015;41(9):1910–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Prasad S, Ram J, Sukhija J, et al. Cataract surgery in infants with microphthalmos. Graefes Arch Clin Exp Ophthalmol. 2015;253(5):739–43.CrossRefPubMedGoogle Scholar
  6. 6.
    Yu SY, Lee JH, Chang BL. Surgical management of congenital cataract associated with severe microphthalmos. J Cataract Refract Surg. 2000;26(8):1219–24.CrossRefPubMedGoogle Scholar
  7. 7.
    Joshi P, Mehta R, Ganesh S. Accuracy of intraocular lens power calculation in pediatric cataracts with less than a 20 mm axial length of the eye. Nepal J Ophthalmol. 2014;6(11):56–64.PubMedGoogle Scholar
  8. 8.
    Steinert RF (2009) Cataract surgery: technique, complications, & management. In: Parrish RK, Donaldson K, Mellem Kairala MB et al (ed) Nanophthalmos, relative anterior microphthalmos, and axial hyperopia, 3rd edn. Elesevier Saunders, Philadelphia, pp 399–410Google Scholar
  9. 9.
    Duke-Elder S. Normal and abnormal development: congenital deformities. In: Duke-Elder S, editor. System of ophthalmology. St. Louis: Mosby; 1964. p. 488–95.Google Scholar
  10. 10.
    Singh O. Nanophthalmos: a perspective on identification and therapy. Ophthalmology. 1982;89:1006.CrossRefPubMedGoogle Scholar
  11. 11.
    Altintaş AK, Acar MA, Yalvaç IS, et al. Autosomal recessive nanophthalmos. Acta Ophthalmol Scand. 1997;75(3):325–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Simmons R. Nanophthalmos: diagnosis and treatment. In: Epstein D, editor. Chandler and Grant’s glaucoma. Philadelphia: Lea & Febiger; 1986. p. 251–9.Google Scholar
  13. 13.
    Naumann GOH. Pathologie des Auges. Berlin: Springer; 1982.Google Scholar
  14. 14.
    Yu YS, Kim SJ, Choung HK. Posterior chamber intraocular lens implantation in pediatric cataract with microcornea and/or microphthalmos. Korean J Ophthalmol. 2006;20(3):151–5.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sinskey RM, Amin P, Stoppel J. Intraocular lens implantation in microphthalmic patients. J Cataract Refract Surg. 1992;18(5):480–4.CrossRefPubMedGoogle Scholar
  16. 16.
    Infant Aphakia Treatment Study Group, Lambert SR, Lynn MJ, et al. Comparison of contact lens and intraocular lens correction of monocular aphakia during infancy: a randomized clinical trial of HOTV optotype acuity at age 4.5 years and clinical findings at age 5 years. JAMA Ophthalmol. 2014;132(6):676–82.CrossRefGoogle Scholar
  17. 17.
    Plager DA, Lynn MJ, Buckley EG, et al. Complications in the first 5 years following cataract surgery in infants with and without intraocular lens implantation in the Infant Aphakia Treatment Study. Am J Ophthalmol. 2014;158(5):892–8.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Holladay JT, Gills JP, Leidlein J, et al. Achieving emmetropia in extremely short eyes with two piggyback posterior chamber intraocular lenses. Ophthalmology. 1996;103:1118–23.CrossRefPubMedGoogle Scholar
  19. 19.
    John Shammas H. Intraocular lens power calculation. Thorofare: SLACK Incorporated; 2004.Google Scholar
  20. 20.
    Hoffer KJ. The Hoffer Q formula: a comparison of theoretic and regression formulas. J Cataract Refract Surg. 1993;19:700–12.CrossRefPubMedGoogle Scholar
  21. 21.
    Hoffer KJ. Clinical results using the Holladay 2 intraocular lens power formula. J Cataract Refract Surg. 2000;26:1233–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Arshinoff SA. Dispersive-cohesive viscoelastic soft shell technique. J Cataract Refract Surg. 1999;25(2):167–73.CrossRefPubMedGoogle Scholar
  23. 23.
    Jhanji V, Sharma N, Vajpayee RB. Management of intraoperative miosis during pediatric cataract surgery using healon 5. Middle East Afr J Ophthalmol. 2011;18(1):55–7.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  1. 1.State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations