Advertisement

Yeast Genetics as a Powerful Tool to Study Human Diseases

  • Preeti Dabas
  • Deepak Kumar
  • Nimisha SharmaEmail author
Chapter

Abstract

Yeasts have proven to be an invaluable model organism to explore the fundamental cellular processes and pathways conserved across eukaryotic organisms. The wide array of available genetic and genomic tools, coupled with experimental tractability, make them ideal organisms for genetic research. A significant contribution to our systemic understanding of many human diseases has been made by studies carried out in yeasts. High-throughput genetic screens have been used to identify human disease genes, as well as to dissect the molecular pathways that regulate the function of disease related proteins. Recent developments in the areas of chemical-genetics and chemical genomics have further highlighted the importance of yeasts in the simultaneous analysis of a large number of drugs, as well as facilitating the identification of their mechanism of action. In this chapter, we describe the various genetic tools that have been used by yeast researchers to increase our understanding of the basic human biology and provide insights into the molecular mechanisms underlying various human diseases.

Keywords

Yeast Null mutants Overexpression Complementation Chemical-genetics Genetic interaction Two-hybrid 

Notes

Acknowledgements

The authors thank Dr. Aparna Sapra for critical reading of the manuscript.

References

  1. Andrusiak, K., Piotrowski, J. S. and Boone, C. 2012. Bioorg. Med. Chem. 20: 1952–1960.Google Scholar
  2. Aouida, M., Pagé, N., Leduc, A., Peter, M. and Ramotar, D. 2004. Cancer Res. 64: 1102–1109.Google Scholar
  3. Appling, D. R. 1999. Methods 19: 338–349.Google Scholar
  4. Auerbach, D. and Stagljar, I. 2005. In: Proteomics and Protein–Protein Interactions: Yeast two-hybrid protein–protein interaction networks. Springer, US, pp. 19–31.Google Scholar
  5. Badano, J. L. and Katsanis, N. 2002. Nat. Rev. Genet. 3: 779–789.Google Scholar
  6. Baetz, K., McHardy, L., Gable, K., Tarling, T., Rebérioux, D., Bryan, J., et al. 2004. PNAS 101: 4525–4530.Google Scholar
  7. Barrientos, A. 2003. IUBMB lif 55: 83–95.Google Scholar
  8. Baruffini, E., Serafini, F., Ferrero, I. and Lodi, T. 2012. PLoS one 7: e34322.Google Scholar
  9. Baryshnikova, A., Costanzo, M., Dixon, S., Vizeacoumar, F. J., Myers, C. L., Andrews, B. and Boone, C. 2010. Method Enzymol. 470: 145–179.Google Scholar
  10. Bassett, D. E., Boguski, M. S. and Hieter, P. 1996. Nature 379: 589–590.Google Scholar
  11. Becker, F., Murthi, K., Smith, C., Come, J., Costa-Roldán, N., Kaufmann, C., et al. 2004. Chem. Biol. 11: 211–223.Google Scholar
  12. Bian, Y., Kitagawa, R., Bansal, P. K., Fujii, Y., Stepanov, A. and Kitagawa, K. 2014 PNAS 111: 1628–1633.Google Scholar
  13. Bjornsti, M. A. 2002. Cancer cel 2: 267–273.Google Scholar
  14. Boone, C., Bussey, H. and Andrews, B. J. 2007. Nat. Rev. Genet. 8: 437–449.Google Scholar
  15. Botstein, D. and Fink, G. R. 2011. Genetics 189: 695–704.Google Scholar
  16. Botstein, D., Chervitz, S. A. and Cherry, J. M. 1997. Science 277:1259–1260.Google Scholar
  17. Breslow, D. K., Cameron, D. M., Collins, S. R., Schuldiner, M., Stewart-Ornstein, J., Newman, H. W., et al. 2008. Nat. Methods 5: 711–718.Google Scholar
  18. Brückner, A., Polge, C., Lentze, N., Auerbach, D. and Schlattner, U. 2009. Int. J Mol. Sci. 10: 2763–2788.Google Scholar
  19. Campion, Y., Neel, H., Gostan, T., Soret, J. and Bordonné, R. 2010. EMBO J. 29: 1817–1829.Google Scholar
  20. Chen, B. R., Hale, D. C., Ciolek, P. J. and Runge, K. W. 2012. BMC genomics 13: 161.Google Scholar
  21. Cooper, S. J., Finney, G. L., Brown, S. L., Nelson, S. K., Hesselberth, J., MacCoss, M. J. and Fields, S. 2010. Genome Res. 20: 1288–1296.Google Scholar
  22. Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E. D., Sevier, C. S., et al. 2010. Science 327: 425–431.Google Scholar
  23. de Clare, M. and Oliver, S. G. 2013. BMC Biol. 11: 24.Google Scholar
  24. Deshpande, G. P., Hayles, J., Hoe, K. L., Kim, D. U., Park, H. O. and Hartsuiker, E. 2009. DNA repair 8: 672–679.Google Scholar
  25. Deutschbauer, A. M., Jaramillo, D. F., Proctor, M., Kumm, J., Hillenmeyer, M. E., Davis, R. W., et al. 2005. Genetics 169: 1915–1925.Google Scholar
  26. Dunham, M. J. and Fowler, D. M. 2013. Curr. Opin. Genet. Dev. 23: 658–664.Google Scholar
  27. Engelender, S., Kaminsky, Z., Guo, X., Sharp, A. H., Amaravi, R. K., Kleiderlein, J. J., et al. A. 1999. Nat. Genet. 22: 110–114.Google Scholar
  28. Fields, S. and Song, O. K. 1989. Nature 340:245–246.Google Scholar
  29. Flaman, J. M., Frebourg, T., Moreau, V., Charbonnier, F., Martin, C., Chappuis, P., et al. 1995. PNAS 92: 3963–3967.Google Scholar
  30. Fleming, J. A., Lightcap, E. S., Sadis, S., Thoroddsen, V., Bulawa, C. E. and Blackman, R. K. 2002. PNAS 99: 1461–1466.Google Scholar
  31. Forbes, S. A., Beare, D., Gunasekaran, P., Leung, K., Bindal, N., Boutselakis, H., et al. 2015, Nucleic Acids Res 43: D805–D811.Google Scholar
  32. Forsburg, S. L. 2001. Nat. Rev. Gene. 2: 659–668.Google Scholar
  33. Forsburg, S. L. 2007. Gravitational Space Biol. Bull. 18: 3–9.Google Scholar
  34. Giaever, G. and Nislow, C. 2014. Genetics 197: 451–465.Google Scholar
  35. Giaever, G., Shoemaker, D. D., Jones, T. W., Liang, H., Winzeler, E. A., Astromoff, A. and Davis, R. W. 1999. Nat. Genet. 21: 278–283.Google Scholar
  36. Giaever, G., Chu, A. M., Ni, L., Connelly, C., Riles, L., Veronneau, S., et al. 2002. Nature 418: 387–391.Google Scholar
  37. Giaever, G., Flaherty, P., Kumm, J., Proctor, M., Nislow, C., Jaramillo, D. F., et al. 2004. PNAS 101: 793–798.Google Scholar
  38. Gibney, P. A., Lu, C., Caudy, A. A., Hess, D. C. and Botstein, D. 2013. PNAS 110: e4393-e4402.Google Scholar
  39. Giorgini, F., Guidetti, P., Nguyen, Q., Bennett, S. C. and Muchowski, P. J. 2005. Nat. Genet. 37: 526–531.Google Scholar
  40. Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., et al. 1996. Science 274: 546–567.Google Scholar
  41. Grose, J. H., Langston, K., Wang, X., Squires, S., Mustafi, S. B., Hayes, W., et al. 2015. PLoS one 10: e0133994.Google Scholar
  42. Gunther, M. R., VanGilder, R., Fang, J. and Beattie, D. S. 2004. Arch. Biochem. Biophys. 431: 207–214.Google Scholar
  43. Hamza, A., Tammpere, E., Kofoed, M., Keong, C., Chiang, J., Giaever, G., et al. 2015. Genetics 201: 1263–1274.Google Scholar
  44. Han, S., Lee, M., Chang, H., Nam, M., Park, H. O., Kwak, Y. S., et al. 2013. Biochem. Biophys. Res. Commun. 436: 613–618.Google Scholar
  45. Hartman J.L. 4th., Stisher, C., Outlaw, D. A., Guo, J., Shah, N. A., Tian, D., et al. 2015. Genes 6: 24–45.Google Scholar
  46. Hayles, J., Aves, S. and Nurse, P. 1986a. EMBO J. 5: 3373.Google Scholar
  47. Hayles, J., Beach, D., Durkacz, B. and Nurse, P. 1986b. Mol. Gen. Genet. 202: 291–293.Google Scholar
  48. Hayles, J., Wood, V., Jeffery, L., Hoe, K. L., Kim, D. U., Park, H. O., et al. 2013. Open Biol. 3: 130053.Google Scholar
  49. Heitman, J., Movva, N. R and Hall, M. N. 1991. Science 253: 905–909.Google Scholar
  50. Henry, T. C., Power, J. E., Kerwin, C. L., Mohammed, A., Weissman, J. S., Cameron, D. M. and Wykoff, D. D. 2011. Eukaryot. Cell 10: 198–206.Google Scholar
  51. Henthorn, D. C., Jaxa-Chamiec, A. A. and Meldrum, E. 2002. Biochem. Pharmacol. 63: 1619–1628.Google Scholar
  52. Hillenmeyer, M. E., Fung, E., Wildenhain, J., Pierce, S. E., Hoon, S., Lee, W., et al. 2008. Science 320: 362–365.Google Scholar
  53. Hoffman, C. S., Wood, V. and Fantes, P. A. 2015. Genetics 201: 403–423.Google Scholar
  54. Hughes, T. R., Marton, M. J., Jones, A. R., Roberts, C. J., Stoughton, R., Armour, C. D., et al. 2000. Cell 102: 109–126.Google Scholar
  55. Huh, W. K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S. and O’Shea, E. K. 2003. Nature 425: 686–691.Google Scholar
  56. Ito, T., Tashiro, K., Muta, S., Ozawa, R., Chiba, T., Nishizawa, M., et al. 2000. PNAS 97: 1143–1147.Google Scholar
  57. Johnson, F. B., Marciniak, R. A., McVey, M., Stewart, S. A., Hahn, W. C. and Guarente, L. 2001. EMBO J. 20: 905–913.Google Scholar
  58. Jones, G. M., Stalker, J., Humphray, S., West, A., Cox, T., Rogers, J., et al. 2008. Nat. Methods 5: 239–241.Google Scholar
  59. Jorgensen, P., Nelson, B., Robinson, M. D., Chen, Y., Andrews, B., Tyers, M. and Boone, C. 2002. Genetics 162: 1091–1099.Google Scholar
  60. Kachroo, A. H., Laurent, J. M., Yellman, C. M., Meyer, A. G., Wilke, C. O. and Marcotte, E. M. 2015. Science 348: 921–925.Google Scholar
  61. Kaeberlein, M., Burtner, C. R. and Kennedy, B. K. 2007. PLoS Genet. 3: e84.Google Scholar
  62. Kajiwara, K., Berson, E. L. and Dryja, T. P. 1994. Science 264: 1604–1608.Google Scholar
  63. Kanemaki, M., Sanchez-Diaz, A., Gambus, A. and Labib, K. 2003. Nature 423: 720–725.Google Scholar
  64. Kato, S., Han, S. Y., Liu, W., Otsuka, K., Shibata, H., Kanamaru, R. and Ishioka, C. 2003. PNAS 100: 8424–8429.Google Scholar
  65. Kemmer, D., McHardy, L. M., Hoon, S., Rebérioux, D., Giaever, G., Nislow, C., et al. 2009. BMC Microbiol. 9: 9.Google Scholar
  66. Khurana, V. and Lindquist, S. 2010. Nat. Rev. Neurosci. 11: 436–449.Google Scholar
  67. Kim, D. U., Hayles, J., Kim, D., Wood, V., Park, H. O., Won, M., et al. 2010. Nat. Biotechnol. 28: 617–623.Google Scholar
  68. Komili, S. and Roth, F. P. 2007. Genes Dev. 21: 137–142.Google Scholar
  69. Lawrence, C. W. 2002. Methods Enzymol. 350:189–199.Google Scholar
  70. Lenk, G. M., Ferguson, C. J., Chow, C. Y., Jin, N., Jones, J. M., Grant, A. E., et al. 2011. PLoS Genet 7: e1002104.Google Scholar
  71. Lim, J., Hao, T., Shaw, C., Patel, A. J., Szabó, G., Rual, J. F., et al. 2006. Cell 125: 801–814.Google Scholar
  72. Louie, R. J., Guo, J., Rodgers, J. W., White, R., Shah, N., Pagant, S., et al. 2012. Genome Med. 4: 103.Google Scholar
  73. Luesch, H., Wu, T. Y., Ren, P., Gray, N. S., Schultz, P. G. and Supek, F. 2005. Chem. Biol. 12: 55–63.Google Scholar
  74. Lum, P. Y., Armour, C. D., Stepaniants, S. B., Cavet, G., Wolf, M. K., Butler, J. S., et al. 2004. Cell 116: 121–137.Google Scholar
  75. Mager, W. H. and Winderickx, J. 2005. Trends Pharmacol. Sci. 26: 265–273.Google Scholar
  76. Marini, N. J., Thomas, P. D. and Rine, J. 2010. PLoS Genet. 6: e1000968.Google Scholar
  77. Martinez, S. L. and Kolodner, R. D. 2010. PNAS 107: 5070–5075.Google Scholar
  78. Matsuyama, S., Xu, Q., Velours, J. and Reed, J. C. 1998. Mol cell. 1: 327–336.Google Scholar
  79. Mayfield, J. A., Davies, M. W., Dimster-Denk, D., Pleskac, N., McCarthy, S., Boydston, E. A., et al. 2012. Genetics 190: 1309–1323.Google Scholar
  80. McGary, K. L., Park, T. J., Woods, J. O., Cha, H. J., Wallingford, J. B. and Marcotte, E. M. 2010. PNAS 107: 6544–6549.Google Scholar
  81. Measday, V. and Stirling, P. C. 2015. Brief Funct. Genomics pii: elv033.Google Scholar
  82. Mnaimneh, S., Davierwala, A. P., Haynes, J., Moffat, J., Peng, W. T., Zhang, W., et al. 2004. Cell 118: 31–44.Google Scholar
  83. Mülleder, M., Capuano, F., Pir, P., Christen, S., Sauer, U., Oliver, S. G. and Ralser, M. 2012. Nat. Biotechnol. 30: 1176–1178.Google Scholar
  84. Mustacchi, R., Hohmann, S. and Nielsen, J. 2006. Yeast 23: 227–238.Google Scholar
  85. Ocampo, A. and Barrientos, A. 2008. BioTechniques 45: vii-xiv.Google Scholar
  86. Oliver, S. G. 2002. Philos. Trans. R Soc. Lond. B Biol. Sci. 357: 17–24.Google Scholar
  87. Ooi, S. L., Shoemaker, D. D. and Boeke, J. D. 2003. Nat. Genet. 35: 277–286.Google Scholar
  88. Osborn, M. J. and Miller, J. R. 2007. Brief. Funct. Genomic. Proteomic. 6: 104–111.Google Scholar
  89. Outeiro, T. F. and Lindquist, S. 2003. Science 302: 1772–1775.Google Scholar
  90. Owen, N., Doe, C. L., Mellor, J. and Davies, K. E. 2000. Hum. Mol. Genet. 9: 675–684.Google Scholar
  91. Pan, X., Yuan, D. S., Xiang, D., Wang, X., Sookhai-Mahadeo, S., Bader, J. S., et al. 2004. Mol. Cell 16: 487–496.Google Scholar
  92. Pan, X., Ye, P., Yuan, D. S., Wang, X., Bader, J. S. and Boeke, J. D. 2006. Cell 124: 1069–1081.Google Scholar
  93. Pan, X., Lei, B., Zhou, N., Feng, B., Yao, W., Zhao, X., et al. 2012. BMC genomics 13: 662.Google Scholar
  94. Pandolfo, M. 1999. Arch Neurol. 56: 1201–1208.Google Scholar
  95. Parsons, A. B., Brost, R. L., Ding, H., Li, Z., Zhang, C., Sheikh, B., et al. 2004. Nat. biotechnol. 22: 62–69.Google Scholar
  96. Parsons, A. B., Lopez, A., Givoni, I. E., Williams, D. E., Gray, C. A., Porter, J., et al. 2006. Cell 126: 611–625.Google Scholar
  97. Pearce, D. A., Ferea, T., Nosel, S. A., Das, B. and Sherman, F. 1999. Nat. Genet. 22: 55–58.Google Scholar
  98. Perocchi, F., Mancera, E. and Steinmetz, L. M. 2008. Mol. Biosyst. 4: 18–29.Google Scholar
  99. Petranovic, D. and Nielsen, J. 2008. Trends Biotechnol. 26: 584–590.Google Scholar
  100. Prelich, G. 2012. Genetics 190: 841–854.Google Scholar
  101. Rak, M., Tetaud, E., Duvezin-Caubet, S., Ezkurdia, N., Bietenhader, M., Rytka, J. and di Rago, J. P. 2007. J Biol. Chem. 282: 34039–34047.Google Scholar
  102. Rallis, C., López-Maury, L., Georgescu, T., Pancaldi, V. and Bähler, J. 2014. Biol. Open. 3: 161–171.Google Scholar
  103. Rine, J., Hansen, W., Hardeman, E. and Davis, R. W. 1983. PNAS 80: 6750–6754.Google Scholar
  104. Roberge, M. 2008. Sci. Signal. 1: pt5.Google Scholar
  105. Robinson, D. G., Chen, W., Storey, J. D. and Gresham, D. 2014. G3. 4: 11–18.Google Scholar
  106. Rolland, T., Taşan, M., Charloteaux, B., Pevzner, S. J., Zhong, Q., Sahni, N., et al. 2014. Cell 159: 1212–1226.Google Scholar
  107. Rual, J. F., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot, A., Li, N., et al. 2005. Nature 437: 1173–1178.Google Scholar
  108. Ryan, O., Shapiro, R. S., Kurat, C. F., Mayhew, D., Baryshnikova, A., Chin, B., et al. 2012. Science 337: 1353–1356.Google Scholar
  109. Sanchez-Diaz, A., Kanemaki, M., Marchesi, V. and Labib, K. 2004. Sci. STKE. 2004: pl8.Google Scholar
  110. Scherens, B. and Goffeau, A. 2004 Genome Biol. 5: 229.Google Scholar
  111. Smith, M. G. and Snyder, M. 2006. Curr. Protoc. Hum. Genet. 15–6.Google Scholar
  112. Smith, A. M., Heisler, L. E., Mellor, J., Kaper, F., Thompson, M. J., Chee, M., et al. 2009. Genome Res. 19: 1836–1842.Google Scholar
  113. Sopko, R., Papp, B., Oliver, S. G. and Andrews, B. J. 2006. Cell Cycle 5: 1397–1402.Google Scholar
  114. Spradling, A., Ganetsky, B., Hieter, P., Johnston, M., Olson, M., Orr-Weaver, T., et al. 2006. Genetics 172: 2025–2032.Google Scholar
  115. Steinmetz, L. M., Scharfe, C., Deutschbauer, A. M., Mokranjac, D., Herman, Z. S., Jones, T., et al. 2002. Nat. Genet. 31: 400–404.Google Scholar
  116. Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F. H., Goehler, H., et al. 2005. Cell 122: 957–968.Google Scholar
  117. Strand, M., Prolla, T. A., Liskay, R. M. and Petes, T. D. 1993. Nature 365: 274–276.Google Scholar
  118. Sunnerhagen, P. 2002. Curr. Genet. 42: 73–84.Google Scholar
  119. Tarnowski, L. J., Kowalec, P., Milewski, M., Jurek, M., Plochocka, D., Fronk, J. and Kurlandzka, A. 2012. PLoS one 7: e38740–e38740.Google Scholar
  120. Tiranti, V., Hoertnagel, K., Carrozzo, R., Galimberti, C., Munaro, M., Granatiero, M., et al. 1998. Am. J. Hum. Genet. 63: 1609–1621.Google Scholar
  121. Tong, A. H. Y., Evangelista, M., Parsons, A. B., Xu, H., Bader, G. D., Pagé, N., et al. 2001. Science 294: 2364–2368.Google Scholar
  122. Tong, A. H. Y., Lesage, G., Bader, G. D., Ding, H., Xu, H., Xin, X., et al. 2004. Science 303: 808–813.Google Scholar
  123. Treich, I., Ho, L. and Carlson, M. 1998. Nucleic Acids Res. 26: 3739–3745.Google Scholar
  124. Uetz, P., Giot, L., Cagney, G., Mansfield, T. A., Judson, R. S., Knight, J. R., et al. 2000. Nature 403: 623–627.Google Scholar
  125. Vieira, N. M., Naslavsky, M. S., Licinio, L., Kok, F., Schlesinger, D., Vainzof, M., et al. 2014. Hum. Mol. Genet. 23: 4103–4110.Google Scholar
  126. Winzeler, E. A., Shoemaker, D. D., Astromoff, A., Liang, H., Anderson, K., Andre, B., et al. 1999. Science 285: 901–906.Google Scholar
  127. Wood, V., Gwilliam, R., Rajandream, M. A., Lyne, M., Lyne, R., Stewart, A., et al. 2002. Nature 415: 871–880.Google Scholar
  128. Xu, Q. and Reed, J. C. 1998. Mol. cell. 1: 337–346.Google Scholar
  129. Yashiroda, Y., Okamoto, R., Hatsugai, K., Takemoto, Y., Goshima, N., Saito, T., et al. 2010. Biochem. Biophys. Res. Commun. 394: 569–573. Google Scholar
  130. Yonemura, Y., Futai, E., Yagishita, S., Suo, S., Tomita, T., Iwatsubo, T. and Ishiura, S. 2011. J. Biol. Chem. 286: 44569–44575.Google Scholar
  131. Zhang, Z. K., Davies, K. P., Allen, J., Zhu, L., Pestell, R. G., Zagzag, D. and Kalpana, G. V. 2002. Mol. Cell. Biol. 22: 5975–5988.Google Scholar
  132. Zhang, N., Osborn, M., Gitsham, P., Yen, K., Miller, J. R. and Oliver, S. G. 2003. Gene 303: 121–129.Google Scholar
  133. Zhong, J., Zhang, H., Stanyon, C. A., Tromp, G. and Finley, R. L. 2003. Genome Res. 13: 2691–2699.Google Scholar
  134. Zwilling, D., Huang, S. Y., Sathyasaikumar, K. V., Notarangelo, F. M., Guidetti, P., Wu, H. Q., et al. 2011. Cell 145: 863–874.Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  1. 1.School of BiotechnologyG.G.S. Indraprastha UniversityDwarkaIndia

Personalised recommendations