Biology of Killer Yeast and Technological Implications

Chapter

Abstract

The killer phenomenon has been reported among various genera of yeast. Potential ability of certain yeast (killer yeast) to kill the other yeast (sensitive yeast) was first observed in the strains of Saccharomyces cerevisiae. The killer yeasts secrete extracellular protein toxin that is fatal for the sensitive yeast, and kills the latter. Killer toxin producer yeasts are immune towards their own toxin but can kill the other sensitive yeasts by employing variety of mechanisms like targeting several cellular components viz. cell wall, plasma membrane, tRNA, DNA etc. The genetic information for production of killer toxin (killer phenotype) is generally present as extra-chromosomal genetic elements like dsRNA or linear DNA, or on the chromosome. The protein toxins produced by several killer yeasts have been thoroughly studied after purification and characterization. Killer toxins encoding genes have been cloned, characterized and expressed in heterologous systems. Significance of yeast-derived killer toxins and/or killer yeasts have been implicated in various areas including food fermentations/yeast-based bioprocesses. Yeast killer phenomenon may play a substantive role in stabilizing the ecosystem. Killer toxins of yeast may have potential for application as biopreservatives, biocontrol agents and as new therapeutic molecules especially against multidrug resistant pathogens. For ethanol-based industries like distilleries, breweries, and wineries, killer yeast can be employed as starter industrial yeast cultures to protect against the wild contaminants. Current article presents recent developments on biological and technological implications of killer yeasts.

Keywords

Killer yeast Yeast killer toxin Receptor Saccharomyces cerevisiae Applications 

Notes

Acknowledgements

Dr. Bijender Kumar Bajaj gratefully acknowledges Council of Scientific and Industrial Research (CSIR) and University Grants Commission (UGC) for financially supporting ‘Killer Yeast’ research in the form of research projects; ERUSMUS-MUNDUS (EU) and VLIR-UOS (Govt. of Belgium) for providing fellowships for ‘Research Stays’ respectively, at University of Naples, Naples, Italy, and University of Antwerp, Antwerpen, Belgium. Dr. Satbir Singh acknowledges CSIR for JRF/SRF for doctoral research. Authors thank Director, School of Biotechnology, University of Jammu, Jammu, for necessary laboratory facilities.

References

  1. Aguiar, C. and Lucas, C. 2000. Food Technol. Biotechnol. 38: 39–46.Google Scholar
  2. Ahmed, A., Sesti, F., Ilan, N., Shih, T.M., Sturley, S.L. and Goldstein, S.A.N. 1999. Cell 99: 283–291.Google Scholar
  3. Arroyo-Helguera, O., Alejandro, D.L.P. and Irene, C. 2012. Braz. J. Microbiol. 880–887.Google Scholar
  4. Baeza, M.E., Sanhueza, M.A. and Cifuentes, V.H. 2008. Biol. Res. 41: 173–182.Google Scholar
  5. Bajaj, B.K. and Sharma, S. 2010. Braz. J. Microbiol. 41: 477–485.Google Scholar
  6. Bajaj, B.K. and Tauro, P. 1994. Biotechnol. Lett. 16: 631–636.Google Scholar
  7. Bajaj, B.K., Dilbaghi, N. and Sharma, S. 2003. J. Sci. Ind. Res. 62: 714–717.Google Scholar
  8. Bajaj, B.K., Raina, S. and Singh, S. 2013. J. Basic Microbiol. 53: 645–656.Google Scholar
  9. Baz, A.F. and Shetaia, Y.M. 2005. Int. J. Agri. Biol. 7: 1003–1006.Google Scholar
  10. Bisson, L.F. 2004. Food Biotechnol. 18: 63–96.Google Scholar
  11. Bomblies, K. 2014. eLIFE 3:e03371.Google Scholar
  12. Bracesco, N., Salvo, V.A. and Nunes, E. 2006. FEMS Microbiol. Lett. 256: 132–136.Google Scholar
  13. Branco, P., Francisco, D., Chambon, C., Hebraud, M., Arneborg, N., Almeida, M.G., Caldeira, J. and Albergaria, H. 2014. Appl. Microbiol. Biotechnol. 98: 843–53.Google Scholar
  14. Breinig, F., Sendzik, T., Eisfeld, K. and Schmitt M.J. 2006. PNAS 103: 3810–3815.Google Scholar
  15. Buzdar, M.A., Chi, Z., Wang, Q., Hua, M.X. and Chi, Z.M. 2011. Appl. Microbiol. Biotechnol. 91: 1571–1579.Google Scholar
  16. Buzzini, P., Turchaetti, B. and Vaughan-Martini, A.E. 2007. FEMS Yeast Res. 7: 749–760.Google Scholar
  17. Buzzini, P., Turchetti, B. and Martini, A. 2004. J. Appl. Microbiol. 96: 1194–1201.Google Scholar
  18. Caramalac, D.A., da Silva Ruiz, L., de Batista, G.C., Birman, E.G., Duarte, M., Hahn, R. and Paula, C.R. 2007. Pediatr. Infect. Dis. J. 26: 553–557.Google Scholar
  19. Carrau, F.M., Neirotti, E. and Gioia, O. 1993. J. Ferment. Bioeng. 76: 67–69.Google Scholar
  20. Carreiro, S.C., Pagnocca, F.C., Bacci, M., Bueno, O.C., Hebling, M.J. and Middelhoven, W.J. 2002. Folia Microbiol. 47: 259–62.Google Scholar
  21. Chi, Z., Liu, G., Zhao, S., Li, J. and Peng, Y. 2010. Appl. Microbiol. Biotechnol. 86: 1227–1241.Google Scholar
  22. Ciani, M. and Comitini, F. 2011. Ann. Microbiol. 61: 25–32.Google Scholar
  23. Ciani, M. and Fatichenti F. 2001, Appl. Env. Microbiol. 67: 3058–3063.Google Scholar
  24. Ciani, M., Comitini, F., Mannazzu, I. and Domizio, P. 2010. FEMS Yeast Res. 10: 123–133.Google Scholar
  25. Coelho, A.R., Tachi, M., Pagnocca, F.C., Nobrega, G.M.A., Hoffmann, F.L., Harada, K. and Hirooka, E.Y. 2009. Food Add. Contaminants 26: 73–81.Google Scholar
  26. Comitini, F., Di Pietro, N., Zacchi, L., Mannazzu, I. and Ciani, M: 2004. Microbiol. 150: 2535–2541.Google Scholar
  27. Comitini, F., Gobbi, M., Domizio, P., Romani, C., Lencion, L., Mannazzu, I. and Ciani, M. 2011. Food Microbiol. 28: 873–882.Google Scholar
  28. Comitini, F., Mannazzu, I., and Ciani, M. 2009. Microb. Cell Fact. 8: 55.Google Scholar
  29. Dabhole, M.P. and Joishy, K.N. 2005. Indian J. Biotechnol. 4: 290–292.Google Scholar
  30. Elmaci, S., Ozcelik, F., Tokatli, M. and Cakir, I. 2014. Antonie Van Leeuwenhoek. 5: 835–47.Google Scholar
  31. Esteve-Zarzoso, B., Manzanares, P., Ramon, D. and Querol, A. 1998. Int. Microbiol. 1: 143–148.Google Scholar
  32. Farris, G.A., Fatichenti, F., Bifulco, I., Berordi, E., Deiana, P., Satta, T. 1992. Biotechnol. Lett. 14, 219–222.Google Scholar
  33. Fleet, G.H. 2003. J. Food Microbiol. 86: 11–22.Google Scholar
  34. Fuentefria, A.M., Perez, L.R.R., d’Azevedo, P.A., Pazzini, F., Schrank, A., Vainstein, M.H. and Valente, P. 2008. J. Basic Microbiol. 48: 25–30.Google Scholar
  35. Goretti, M., Turchetti, B., Buratta, M., Branda, E., Corazzi, L., Vaughan-Martini, A. and Buzzini, P. 2009. Int. J. Food Microbiol. 131: 178–182.Google Scholar
  36. Guo, F.J., Ma, Y., Xu, H.M., Wang, X.H. and Chi, Z.M. 2013. Antonie van Leeuwenhoek 103: 737–746.Google Scholar
  37. Gutierrez, A.R., Epifanio, S., Garijo, P., Lopez, R. and Santamaría, P. 2001. Am. J. Viticulture Enol. 52: 352–356.Google Scholar
  38. Guyard, C., Seguy, N., Cailliez, J.C., Drobecq, H., Polonelli, L., Dei-Cas, E., Mercenier, A. and Menozzi, F.D. 2002. J. Antimicrob. Chemother. 49: 961–971.Google Scholar
  39. Hammond, J.R.M. and Eckersley, K.W. 1984. J. Inst. Brew. 90: 167–177.Google Scholar
  40. Hatoum, R., Labrie, S. and Fliss, I. 2012. Frontiers in Microbiol. 3: 1–12.Google Scholar
  41. Heard, G.M. and Fleet, G.H. 1987. Appl. Env. Microbiol. 53: 2171–2174.Google Scholar
  42. Ingeniis, J.D., Raffaelli, N., Ciani, M. and Mannazzu, I. 2009. Appl. Env. Microbiol. 75: 1129–1134.Google Scholar
  43. Izgu, F. and Altinbay, D. 1997. Microbios. 89: 15–22.Google Scholar
  44. Izgu, F., Altinbay, D. and Acun, T. 2006. Enzym Microb. Technol. 39: 669–676.Google Scholar
  45. Jablonowski, D. and Schaffrath, R. 2007. Biochemical Society Transactions 35: 1533–1537.Google Scholar
  46. Javadekar, V.S., Sivaraman, H. and Gokhale, D.V. 1995. J. Ind. Microbiol. 15: 94–102.Google Scholar
  47. Keszthelyi, A. and Ohkusu, M. 2006. Mycoses 49: 176–183.Google Scholar
  48. Klassen, R., Teichert, S. and Meinhardt, F. 2004. Mol. Microbiol. 53: 263–273.Google Scholar
  49. Klassen, R., Wemhoff, S., Krause, J. and Meinhardt, F. 2011. Mol. Genet. Genomics 285: 185–195.Google Scholar
  50. Labbani, F.Z.K., Turchetti, B., Bennamoun, L., Dakhmouche, S., Roberti, R., Corazzi, L., Meraihi, Z. and Buzzini, P. 2015. Antonie van Leeuwenhoek 107: 961–970.Google Scholar
  51. LeBrasseur, N. 2005. J. Cell Biol. 168: 346–347.Google Scholar
  52. Liu, G., Chi, Z., Wang, G., Wang, Z., Li, Y. and Chi, Z. 2013. Crit. Rev. Biotechnol. Google Scholar
  53. Lopes, C.A. and Sangorrín, M.P. 2010. Revista Argentina de Microbiología 42: 298–306.Google Scholar
  54. Magliani, W., Conti, S., Salati, A., Vaccari, S., Ravanetti, L., Maffei, D.L. and Polonelli, L. 2004. FEMS Yeast Res. 5: 11–18.Google Scholar
  55. Magliani, W., Conti, S., Travassos, L.R. and Polonelli, L. 2008. FEMS Microbiol. Lett. 288: 1–8.Google Scholar
  56. Malherbe, S., Bauer, F.F., du Toit, M. 2007. South Afr. J. Enol. Viticult. 28: 169–186.Google Scholar
  57. Manzanares, P., Valles, S. and Viana, F. 2011. In: Molecular wine microbiology. (eds C.A.V. Santiago, R. Munoz and R.G. Garcia), Academic Press, Valencia, Spain, pp. 85–110.Google Scholar
  58. Marquina, D., Santos, A. and Peinado, J.M. 2002. Int. Microbiol. 5: 65–71.Google Scholar
  59. Maturano, Y.P., Nally, M.C., Toro, M.E., de Figueroa, L.I.C., Combina, M. and Vazquez, F. 2012. World J. Microbiol. Biotechnol. 28: 3135–3142.Google Scholar
  60. Melvydas, V., Serviene, E., Cernishova, O. and Petkuniene, G. 2007. Biologija 53: 32–35.Google Scholar
  61. Meneghin, M.C., Reis, V.R. and Antonini, S.R. 2010. Braz. Arch. Biol. Technol. 53: 1043–1050.Google Scholar
  62. Muccilli, S., Wemhoff, S., Restuccia, C. and Meinhardt, F. 2013. Yeast 30: 33–43.Google Scholar
  63. Mushtaq, M., Nahar, S. and Hashmi, M.H. 2010. Pak. J. Bot. 42: 4313–4327.Google Scholar
  64. Ochigava, I., Collier, P.J., Walker, G.M. and Hakenbeck, R. 2011. Antonie van Leeuwenhoek 99: 559–566.Google Scholar
  65. Papadimitriou, M.N., Resende, C., Kuchler, K. and Brul, S. 2007. Int. J. Food Microbiol. 113: 173–179.Google Scholar
  66. Peng, Y., Chi, Z., Wang, X. and Li, J. 2010. Mar. Biotechnol. 12: 479–85.Google Scholar
  67. Platania, C., Restuccia, C., Muccilli, S. and Cirvilleri, G. 2012. Food Microbiol. 30: 219–225.Google Scholar
  68. Polonelli, L. and Conti, S. 2009. Methods Mol. Biol. 499: 97–115.Google Scholar
  69. Polonelli, L., Archibusacci, C., Sestito, M. and Morace, G. 1983. J. Clin. Microbiol. 17: 774–780.Google Scholar
  70. Pretorius, I.S., duToit, M. and van Rensburg, P. 2003. Food Technol. Biotechnol. 41: 3–10.Google Scholar
  71. Ramon-Portugal, F., Delia, M.L., Strehaiano, P. and Riba, J.P. 1998. World J. Microbiol. Biotechnol. 14: 83–87.Google Scholar
  72. Reiter, J., Herker, E., Madeo, F. and Schmitt, M.J. 2005. J. Cell Biol. 168: 353–358.Google Scholar
  73. Robledo-Leal, E., Elizondo-Zertuche, M., Villarreal-Treviño, L., Treviño-Rangel, R.D., García-Maldonado, N., Adame-Rodríguez, J.M. and González, G.M. 2014. Folia Microbiol. 59: 503–506.Google Scholar
  74. Robledo-Leal, E., Villarreal-Trevino, L. and Gonzalez, G.M. 2012. Trop. Biomed. 29: 297–300.Google Scholar
  75. Salek, A., Schnettler, R. and Zimmermann, U. 1992. FEMS Microbiol. Lett. 75: 103–109.Google Scholar
  76. Salek, A.T. and Arnold, W.M. 1994. Chem. Mikrobiol. Technol. 16: 165–183.Google Scholar
  77. Santos, A., Alonso, A., Belda, I. and Marquina, D. 2013. Fungal Gen. Biol. 50: 44–54.Google Scholar
  78. Santos, A., Marquina, D., Leal, J.A. and Peinado, J.M. 2000. Appl. Environ. Microbiol. 66: 1809–1813.Google Scholar
  79. Santos, A., Mauro, M.S., Bravo, E. and Marquina, D. 2009. Microbiol. 155: 624–634.Google Scholar
  80. Santos, A., Navascues, E., Bravo, E. and Marquina, D. 2011. Int. J. Food Microbiol. 145: 147–154.Google Scholar
  81. Satyanarayana, T. and Kunze, G. 2009. Yeast biotechnology: diversity and applications. Springer, Berlin, pp. 489–715.Google Scholar
  82. Scheid, L.A., Mario, D.A., Heins-Vaccari, E.M., Santuario, J.M. and Alves, S.H. 2010. Rev. Inst. Med. Trop. Sao Paulo. 52: 161–2.Google Scholar
  83. Schmitt M.J. and Breinig, F. 2002. FEMS Microbiol. Reviews 26: 257–276.Google Scholar
  84. Schmitt, M.J. and Schernikau, G. 1997. Food Technol. Biotechnol. 35: 281–285.Google Scholar
  85. Selvakumar, D. and Miyamoto, M. 2006. Antimicrob. Agents Chem. 50: 3090–3097.Google Scholar
  86. Silva, S., Calado, S., Lucas, C. and Aguiar, C. 2008. Microbiol. Res. 163: 243–251.Google Scholar
  87. Sinclair, R.M. 2014. Frontiers in Microbiol. 5: 1–5.Google Scholar
  88. Soares, G.A.M. and Sato, H.H. 2000. Braz. J. Microbiol. 31: 291–297.Google Scholar
  89. Starmer, W.T., Ganter, P.F., Aberdeen, V., Lachance, M.A. and Phaff, H.J. 1987. Can. J. Microbiol. 33: 783–96.Google Scholar
  90. Stopiglia, C.D., Heidrich, D., Sorrentino, J.M., Vieira, F.J., Landell, M.F., Valente, P. and Scroferneker, M.L. 2014. J. Basic Microbiol. 54: 578–84.Google Scholar
  91. Stratford, M. 2006. In: The yeast handbook: yeast in food and beverages. (eds A. Querol and G.H. Fleet), Springer-Verlag Berlin, pp 335–379.Google Scholar
  92. Suzuki, C., Kawano, M., Kashiwagi, T., Arata, Y., Kawasumi, T. and Kashiwagi, Y. 2000. Protein Eng. 13: 73–76.Google Scholar
  93. Ullivarri, M.F., Mendoza, L.M. and Raya, R.R. 2014. Antonie van Leeuwenhoek 106: 865–878.Google Scholar
  94. Vadasz, A.S., Franken, D.B., Govender, B.L., Jagganath, D.B., Govender, P., Ariatti, M., Pretorius, I.S. and Gupthar, A.S. 2002. South Afr. J. Enol. Viticulture 23: 39–47.Google Scholar
  95. Wang, X., Chi, Z., Yue, L. and Li, J. 2007. Curr. Microbiol. 55: 396–401.Google Scholar
  96. Wang, X.X., Chi, Z., Peng, Y., Wang, X.H., Ru, S.G. and Chi, Z.M. 2012. Microbiol. Res. 167: 558–63.Google Scholar
  97. Webster, J. and Weber, R. 2007. Introduction to fungi. Cambridge University Press, New York, pp 226–247.Google Scholar
  98. Wickner, R.B., Fujimura, T. and Esteban, R. 2013. Adv. Virus Res. 86: 1–36.Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  1. 1.School of BiotechnologyUniversity of JammuJammuIndia

Personalised recommendations