Skip to main content

Saccharomyces cerevisiae as a Model for Space Biology

  • Chapter
  • First Online:
Yeast Diversity in Human Welfare

Abstract

Manned spaceflight continues to be in the agenda of most of the countries involved in space research. Development of human settlements in planets and sustainable space ecosystems where crops can be grown and waste recycled are the exciting aims of some of the future space missions. There is considerable concern on the health of the space travelers during long term travel and stay in these unexplored terrains. Astronauts may be exposed to ionizing radiations and weightlessness due to alterations in gravitational force. Studies on astronauts during and after space travel indicate effects on the immune system, cardiovascular system, bone density etc. It is not clearly known how the space missions may influence DNA replication, transcription, and translation and cell division cycle in humans. Information on these will be vital. Experiments on humans and animals could be cumbersome in space. As such use of eukaryotic models like Saccharomyces cerevisiae could be rewarding. The yeast S. cerevisiae is considered as an excellent model for studying eukaryotic biology and has contributed significantly to our understanding of cancer biology and fundamental metabolic processes in humans. In this review, the potential of S. cerevisiae as a model for space biology has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar U. B., Francois J. M. 2003. Lett. Appl. Microbiol. 37: 268–274.

    Google Scholar 

  • Amon, A. 1996. Cell 84: 651–654.

    Google Scholar 

  • Baladron, V., S. Ufano, E. Duenas, A. B. Martin-Cuadrado, F. del Rey, and C. R. Vazquez de Aldana. 2002. Eukaryot. Cell 1: 774–786.

    Google Scholar 

  • Ball, J. R., Evans Jr., C. H. 2001. In: Committee on Creating a Vision for Space Medicine During Travel Beyond Earth Orbit, Board on Health Sciences Policy, Washington, DC, USA, National Academy.

    Google Scholar 

  • Ballatori N., Krance S. M., Notenboom S., Shi S., Tieu K., Hammond C.L. 2009. Biol. Chem. 390: 191–214.

    Google Scholar 

  • Benoit M. R,. Klaus D. M. 2007. Adv. Space Res. 39: 1225–1232.

    Google Scholar 

  • Berry D., Volz P. A. 1979. Appl. Environ. Microbiol. 38: 751–753.

    Google Scholar 

  • Bizzarri, M., Monici, M., & van Loon, J. J. 2015. BioMed. res. int.

    Google Scholar 

  • Botstein, D., & Fink, G. R. 2011. Genetics189, 695–704.

    Google Scholar 

  • Botstein, D., Chervitz, S. A., & Cherry, J. M. 1997. Science (New York, NY)277, 1259.

    Google Scholar 

  • Bradamante S., Barenghi L., Villa A. 2010a. Patent US 7695957 B2.

    Google Scholar 

  • Bradamante, S., Villa, A., Versari, S., Barenghi, L., Orlandi, I., & Vai, M. 2010b. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research1803, 1376–1385.

    Google Scholar 

  • Chant, J. 1999. Annu. Rev. Cell Dev. Biol. 15: 365–391.

    Google Scholar 

  • Clément, G. 2011. Fundamentals of space medicine (Vol. 23). Springer Science & Business Media. Germany.

    Google Scholar 

  • Clément, G., & Slenzka, K. (Eds.). 2006. In: Fundamentals of Space Biology: Research on Cells, Animals, and Plants in Space (Vol. 18). Springer Science & Business Media. USA.

    Google Scholar 

  • Cogli, M. 2007. Gravitational and Space Research5 (2).

    Google Scholar 

  • Coleman, C. B., Allen, P. L., Rupert, M., Goulart, C., Hoehn, A., Stodieck, L. S., and Hammond, T. G. 2008. Astrobiology 8: 1071–1078.

    Google Scholar 

  • Collister M., Didmon M. P., MacIssac F., Stark M. J., MacDonald N. Q., Keyse S. M. 2002. FEBS Lett. 527: 186–192.

    Google Scholar 

  • Colman-Lerner, A., T. E. Chin, and R. Brent. 2001. Cell 107: 739–750.

    Google Scholar 

  • Cullen P. J. and Sprague G. F. Jr. 2000. Proc. Natl. Acad. Sci. USA. 97: 13619–13624.

    Google Scholar 

  • Dayanandan, P. 2011. J. Biosci36: 911–919.

    Google Scholar 

  • Decelle, J. G. and Taylor, G. R. 1976. Appl. Environ. Microbiol. 32: 659–665.

    Google Scholar 

  • Dolinski, K., and D. Botstein. 2005. Genome Res. 15: 1611–1619.

    Google Scholar 

  • Dolinski, K., and D. Botstein. 2007. Annu. Rev. Genet. 41: 465–507.

    Google Scholar 

  • Doolin, M. T., A. L. Johnson, L. H. Johnston, and G. Butler. 2001. Mol. Microbiol. 40: 422–432.

    Google Scholar 

  • Etheridge, T., Nemoto, K., Hashizume, T., Mori, C., Sugimoto, T., Suzuki, H., … & Higashitani, A. 2011. PloS One6(6).

    Google Scholar 

  • Fleet G. H. 1991. Cell walls. In: Rose A. H., Harrison J. D. (eds) The yeasts. Vol. 4. Academic, London, pp. 199–277.

    Google Scholar 

  • Forsburg, S. L. 2007. Gravitational and Space Research 18(2).

    Google Scholar 

  • Gasch A. P., Spellman P. T., Kao C. M., Carmel-Harel O., Eisen M. B., Storz G., Botstein D., Brown P. O. 2000. Mol. Biol. Cell. 11: 4241–4257.

    Google Scholar 

  • Ghaemmaghami, S., Huh, W. K., Bower, K., Howson, R. W., Belle, A., Dephoure, N., … & Weissman, J. S. 2003. Nature 425: 737–741.

    Google Scholar 

  • Giaever G. and Nislow C. 2014. Genetics 197: 451–465.

    Google Scholar 

  • Giaever, G., A. M. Chu, L. Ni, C. Connelly, L. Riles et al., 2002. Nature 418: 387–391.

    Google Scholar 

  • Gimeno, C. J., Ljungdahl, P. O., Styles, C. A., & Fink, G. R. 1992. Cell68: 1077–1090.

    Google Scholar 

  • Gordon DB, Siamon G. 2003. Immunity 19: 311–315.

    Google Scholar 

  • Gueguinou, N., Huin-Schohn, C., Bascove, M., Bueb, J. L., Tschirhart, E., Legrand-Frossi, C., & Frippiat, J. P. 2009. J. Leukocyte Biology 86: 1027–1103.

    Google Scholar 

  • Hader D. P., Lebert M., Richter P. and Ntefidou M. 2003. Adv. Space Res. 31: 2181–2186.

    Google Scholar 

  • Hahn J. S., Thiele D. J. 2002. J. Biol. Chem. 227: 21278–21284.

    Google Scholar 

  • Hammond, T. G., & Hammond, J. M. 2001. American J. Physiol-Renal Physiol281: F12–F25.

    Google Scholar 

  • Hammond, T. G., Benes, E., O’Reilly, K. C., Wolf, D. A., Linnehan, R. M., Taher, A., Kaysen, J. H., Allen, P. L., Goodwin, T. J. 2000. Physiol. Genomics 3: 163–173.

    Google Scholar 

  • Hartwell L. H., Culotti J., Reid B. 1970. Proc. Natl. Acad. Sci. USA. 66: 352–9.

    Google Scholar 

  • Heinicke, S., Livstone, M. S., Lu, C., Oughtred, R., Kang, F., Angiuoli, S. V., … & Dolinski, K. 2007. PLoS One2: e766.

    Google Scholar 

  • Herranz, R., Anken, R., Boonstra, J., Braun, M., Christianen, P. C., de Geest, M., … & Hemmersbach, R. 2013. Astrobiology 13: 1–17.

    Google Scholar 

  • Highstein S. M., Fay R. R. and Popper A. N. 2004. The vestibular system (New York: Springer-Verlag). USA.

    Google Scholar 

  • Hofer M., Pospisil M. 1997. International Immunopharmacology 19: 607–609.

    Google Scholar 

  • Hohmann S. 2002. Microbiol. Mol. Biol. Rev. 66: 300–372.

    Google Scholar 

  • Horneck, G., Klaus, D. M., & Mancinelli, R. L. 2010. Microbiol. Mol. Biol. Rev. 74: 121–156.

    Google Scholar 

  • Huh, W. K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S., & O’Shea, E. K. 2003. Nature 425: 686–691.

    Google Scholar 

  • Inoue S. B., Takewaki N., Takasuka T., Mio T., Adachi M., Fujii Y., Miyamoto C., Arisawa M., Furuichi Y., Watanabe T. 1995. Eur J Biochem. 231: 845–854.

    Google Scholar 

  • Jamas S., Easson J., Davidson D., Ostro G. R. 1996. US Patent. 5, 532, 223.

    Google Scholar 

  • Johanson K., Allen P. L., Lewis F., Cubano L. A., Hyman L. E., Hammond T. G. 2002. J. Appl. Physiol. 93: 2171–80.

    Google Scholar 

  • Johanson, K., Allen, P. L., Gonzalez-Villalobos, R. A., Nesbit, J., Nickerson, C. A., Höner Zu Bentrup, K., Wilson, J. W., Ramamurthy, R., D’Elia, R., Muse, K. E., Hammond, J., Freeman, J., Stodieck, L. S., and Hammond, T. G. 2007. Acta Astronaut. 60: 460–471.

    Google Scholar 

  • Jones, D. P. 2008. American J. Physiol. Cell Physiol295: C849–C868.

    Google Scholar 

  • Kang, P. J., A. Sanson, B. Lee, and H. O. Park. 2001. Science. 292: 1376–1378.

    Google Scholar 

  • Kim K. S. and Yun H. S. 2006. Enzyme Microb. Technol. 39: 496–500.

    Google Scholar 

  • Klaus D., Simske S., Todd P., Stodieck L. 1997. Microbiology 143: 449–55.

    Google Scholar 

  • Klaus, D. M. 2001. Gravit. Space Biol. Bull. 14: 55–64.

    Google Scholar 

  • Klaus, D. M., Benoit, M. R., Nelson, E. S., & Hammond, T. G. 2004. Journal of Gravitational Physiology: a Journal of the International Society for Gravitational Physiology. 11: 17–27.

    Google Scholar 

  • Klis F. M., Mol P., Hellingwerf K., Brul S. 2002. FEMS. Microbiol. Rev. 26: 239–256.

    Google Scholar 

  • Kobi, D., Zugmeyer, S., Potier, S., and Jaquet-Gutfreund, L. 2004. FEMS Yeast Res. 5: 210–230.

    Google Scholar 

  • Lemire, B. D., Oyedotun, K. S. 2002. Biochim. Biophys. Acta 1553: 102–116.

    Google Scholar 

  • Levinskikh M. A., Sychev V. N., Derendyaeva T. A., Signalova O. B., Salisbury F. B., Campbell W. F., Bingham G. E., Bubenheim D. L and Jahns G. 2000. J. Plant Physiol. 156: 522–529.

    Google Scholar 

  • Liu H. Z., Wang Q., Liu X. Y., Tan S. S. 2008. Appl. Microbiol. Biotechnol. 81: 543–550.

    Google Scholar 

  • Liu X. Y , Wang Q., Cui S. W., Liu H. Z. 2007a. Food Hydrocoll. 22: 239–247.

    Google Scholar 

  • Lynch, S. V., Mukundakrishnan, K., Benoit, M. R., Ayyaswamy, P. S., and Matin, A. 2006. Appl. Environ. Microbiol. 72: 7701–7710.

    Google Scholar 

  • Martin H., Flandez M., Nombela C., Molina M. 2005. Mol. Microbiol. 58: 6–16.

    Google Scholar 

  • Martín-Cuadrado A. B., Fontaine T., Esteban P. F., Dedo J. E., Medina-Redondo M., Rey F., Latgé J. P., Aldana C. R. V. 2008. Fungal Genet. Biol. 45: 542–553.

    Google Scholar 

  • McPherson, A. 1997. Trends Biotechnol. 15: 197–200.

    Google Scholar 

  • Meaney D. F., Johnston E. D., Litt M., Pollack S. R. 1998. Adv. Heat Mass Transf. Biotechnol. HTD 362: 103–107.

    Google Scholar 

  • Mennigmann, H. D., and M. Lange. 1986. Naturwissenschaften 73: 415–417.

    Google Scholar 

  • Montgomery Jr, P. O., Cook, J. E., Reynolds, R. C., Paul, J. S., Hayflick, L., Stock, D., … & Campbell, D. 1978. In vitro. 14: 165–173.

    Google Scholar 

  • Morey-Holton E. R. 2003. In The impact of Gravity on Life; in Evolution on planet Earth: the impact of the physical environment (eds) L Rothschild and A Lister (New York: Academic Press) pp. 143–159.

    Google Scholar 

  • Ni, L., and M. Snyder. 2001. Mol. Biol. Cell. 12: 2147–2170.

    Google Scholar 

  • Nickerson C. A., Ott C. M., Wilson J. W., Ramamurthy R., Pierson D. L. 2004. Microbiol. Mol. Biol. Rev. 68: 345–361.

    Google Scholar 

  • Nislow, C., Lee, A. Y., Allen, P. L., Giaever, G., Smith, A., Gebbia, M. & Hammond, T. G. 2015. BioMed. Res. Int.

    Google Scholar 

  • Pasteur L. Mémoire.1860. Annales de Chimie 58: 323–426.

    Google Scholar 

  • Peter J. R., Brent E. L., Luke A. B., Elizabeth L. A., Harry E. E., David L. W. 2004. International Immunopharmacology 4: 1209–1215.

    Google Scholar 

  • Pierson, D. L. 2001. Gravit. Space Biol. Bull. 14: 1–6.

    Google Scholar 

  • Pierson, D. L., Chidambaram, M., Heath, J. D., Mallary, L., Mishra, S. K., Sharma, B., Weinstock, G. M.1996. FEMS Immunol. Med. Microbiol. 16: 273–281.

    Google Scholar 

  • Pierson, D. L., Mehta, S. K., Magee, B. B., Mishra, S. K. 1995. J. Med. Vet. Mycol. 33: 145–150.

    Google Scholar 

  • Prusty, R., Grisafi, P., and Fink, G. R. 2004. Proc. Natl. Acad. Sci. USA. 101: 4153–4157.

    Google Scholar 

  • Purevdorj-Gage, B., Sheehan, K. B., and Hyman, L. E. 2006. Appl. Environ. Microbiol. 72: 4569–4575.

    Google Scholar 

  • Reynolds, T. B., Jansen, A., Peng, X., and Fink, G. R. 2008. Eukaryot Cell 7: 122–130.

    Google Scholar 

  • Rucci N., Rufo A., Alamanou M., Teti A. 2007. J. Cell. Biochem. 100: 464–473.

    Google Scholar 

  • Saito H., Tatebayashi K. 2004. J. Biochem. 136: 267–272.

    Google Scholar 

  • Sheehan, K. B., McInnerney, K., Purevdorj-Gage, B., Altenburg, S. D., & Hyman, L. E. 2007. BMC Genomics 8: 3.

    Google Scholar 

  • Sicard D., Legras J. L. 2011. C R Biol. 334: 229–36.

    Google Scholar 

  • Sikavitsas, V. I., Bancroft, G. N., & Mikos, A. G. 2002. J. Biomed. Materials Res. 62: 136–148.

    Google Scholar 

  • Simon, J. A., & Bedalov, A. 2004. Nature Reviews Cancer. 4: 481–487.

    Google Scholar 

  • Souza K. A., Ilyin E. A., Sychev V. N. and Jahns G. C. 2009. In Biological Research in Space; in Space Biology and Medicine: Vol 5 U.S. and Russian Cooperation in Space Biology and Medicine (eds) A. E. Nicogossian, S. Mohler, O. Gazenko and A. Grigoriev (Reston: AIAA) pp. 1–44.

    Google Scholar 

  • Souza, K. A., Black, S. D. and Wassersug, R. J. 1995. Proc. Natl. Acad. Sci. 92: 1975–1978.

    Google Scholar 

  • Stanhill, A., Schick, N., and Engelberg, D. 1999. Mol Cell Biol. 19: 7529–7538.

    Google Scholar 

  • Tairbekov, M. G., Parfyonov, G. P., Shepelev, E. Y., & Sushkov, F. V. 1983. Adv. in Space Res.  3: 153–158.

    Google Scholar 

  • Thompson I. M., Spence C. R., Lamm D. L. 1987. Am. J. Med. Sci. 294: 294–300.

    Google Scholar 

  • Ufano, S., M. E. Pablo, A. Calzada, F. del Rey, and C. R. Vazquez de Aldana. 2004. J. Cell Sci. 117: 545–557.

    Google Scholar 

  • Unsworth, B. R., & Lelkes, P. I. 1998. Nature Medicine 4: 901–907.

    Google Scholar 

  • Van Loon, J. J. W. A. 2007. Biology in Space and Life on Earth: Effects of Spaceflight on Biological Systems 17–32.

    Google Scholar 

  • Van Mulders S. E., Stassen C., Daenen L., Devreese B., Siewers V., van Eijsden R. G., Nielsen J., Delvaux F. R., Willaert R. 2011. Astrobiology 11: 45–55.

    Google Scholar 

  • Versari S., Villa A., Barenghi L., Bradamante S. 2005. European Space Agency SP-585 versari/1–versari/2 [Special Publication].

    Google Scholar 

  • Volkmann D. and Baluska F. 2006. Protoplasma 229: 143–148.

    Google Scholar 

  • Walther I., Bechler B., Müller O., Hunzinger E., Cogoli A. 1996. J. Biotechnol. 47: 113–27.

    Google Scholar 

  • Willaert G. R. 2013. Current Biotechnology 2: 226–234.

    Google Scholar 

  • Wilson J. W., Ramamurthy R., Porwollik S., McClelland M., Hammond T. G., Allen P. L., Ott C. M., Pierson D. L., Nickerson C. A. 2002. Proc. Natl. Acad. Sci. 99: 13807–13812.

    Google Scholar 

  • Wolverton B. C. and Kiss J. Z. 2009. Gravitational Space Biol. 22: 12–23.

    Google Scholar 

  • Yamada, M., Takeuchi, Y., Kasahara, H., Murakami, S., Yamashita. 1993. M. Biol. Sci. Space. 7: 116–119.

    Google Scholar 

  • Yi Z. C., Li X. F., Wang Y., Wang J., Sun Y., Zhuang F. Y. 2011. Adv. Space Res. 47: 2049–2057.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankunny Mohan Karuppayil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Halbandge, S.D., Vidyasagar, P.B., Karuppayil, S.M. (2017). Saccharomyces cerevisiae as a Model for Space Biology. In: Satyanarayana, T., Kunze, G. (eds) Yeast Diversity in Human Welfare. Springer, Singapore. https://doi.org/10.1007/978-981-10-2621-8_2

Download citation

Publish with us

Policies and ethics