Advertisement

Applications of Kluyveromyces marxianus in Biotechnology

  • Javier A. Varela
  • Loughlin Gethins
  • Catherine Stanton
  • Paul Ross
  • John P. MorrisseyEmail author

Abstract

Kluyveromyces marxianus is a member of the Saccharomycetales yeast order and is used for a variety of commercial applications, most notably production of ethanol from food waste streams. Traits such as rapid growth rates, lactose utilization, good tolerance to inhibitory molecules and thermotolerance facilitate these applications. K. marxianus is frequently isolated from food and beverage environments and is especially associated with fermented dairy products such as kefir. This history of food association means that K. marxianus has GRAS/QPS status, thereby facilitating applications in the food sector. K. marxianus strains have the capacity to produce a range of volatile fragrance and flavor (F&F) molecules such as higher alcohols and acetate esters and there is consequent interest in exploiting high-producing strains as F&F cell factories. The availability of genome sequences and the development of molecular tools are facilitating further applications in K. marxianus as a novel yeast cell factory for biomolecule production. This chapter will provide an update on the genetics and biology of this yeast, and an overview of commercial applications. It will later focus on three specific areas: K. marxianus for bioethanol production; for the production of fragrance and flavors; and the future development of K. marxianus as a yeast cell factory.

Keywords

Kluyveromyces marxianus Bioethanol Cell factory Biotechnology Fermentation Flavour Fragrance 

References

  1. Abdel-Banat B.M., Nonklang S., Hoshida H. and Akada R. 2010. Yeast 27: 29–39.Google Scholar
  2. Amaya-Delgado L., Herrera-Lopez E.J., Arrizon J., Arellano-Plaza M. and Gschaedler A. 2013. World J Microbiol Biotechnol 29: 875–881.Google Scholar
  3. Bachmann H., Pronk J.T., Kleerebezem M. and Teusink B. 2015. Curr Opin Biotechnol 32: 1–7.Google Scholar
  4. Belloch C., Barrio E., Garcia M.D. and Querol A. 1998. Yeast 14: 1341–1354.Google Scholar
  5. Boer V.M., Tai S.L., Vuralhan Z., Arifin Y., Walsh M.C., Piper M.D.W., De Winde J.H., Pronk J.T. and Daran J.-M. 2007. FEMS Yeast Res. 7: 604–620.Google Scholar
  6. Borodina I. and Nielsen J. 2014. Biotechnol J 9: 609–620.Google Scholar
  7. Castro R.C. and Roberto I.C. 2014. Appl Biochem Biotechnol 172: 1553–1564.Google Scholar
  8. Chang J.J., Ho F.J., Ho C.Y., Wu Y.C., Hou Y.H., Huang C.C., Shih M.C. and Li W.H. 2013. Biotechnol Biofuels 6: 19.Google Scholar
  9. Chen X.-M., Kobayashi H., Sakai M., Hirata H., Asai T., Ohnishi T., Baldermann S. and Watanabe N. 2011. J Plant Physiol 168: 88–95.Google Scholar
  10. Cheon Y., Kim J.S., Park J.B., et al. 2014. J Biotechnol 182–183: 30–36.Google Scholar
  11. Choo J.H., Han C., Kim J.Y. and Kang H.A. 2014. Biotechnol Lett 36: 2059–2067.Google Scholar
  12. Clark G.S. 1990. Perfum Flavor 15: 37–44.Google Scholar
  13. Crook N. and Alper H.S. 2012. Classical Strain Improvement. Engineering Complex Phenotypes in Industrial Strains, pp. 1–33. John Wiley & Sons, Inc.Google Scholar
  14. Dickinson J.R., Salgado L.E. and Hewlins M.J. 2003. J Biol Chem 278: 8028–8034.Google Scholar
  15. Diniz R.H., Rodrigues M.Q., Fietto L.G., Passos F.M. and Silveira W.B. 2014. Biocatal Agric Biotechnol 3: 111–117.Google Scholar
  16. Ehrlich F. 1907. Berichte der deutschen chemischen Gesellschaft 40: 1027–1047.Google Scholar
  17. Etschmann M., Bluemke W., Sell D. and Schrader J. 2002. Appl Microbiol Biotechnol 59: 1–8.Google Scholar
  18. Fasoli G., Tofalo R., Lanciotti R., Schirone M., Patrignani F., Perpetuini G., Grazia L., Corsetti A. and Suzzi G. 2015. Int J Food Microbiol 214: 151–158.Google Scholar
  19. Fonseca G.G., Heinzle E., Wittmann C. and Gombert A.K. 2008. Appl Microbiol Biotechnol 79: 339–354.Google Scholar
  20. Gao J., Yuan W., Li Y., Xiang R., Hou S., Zhong S. and Bai F. 2015. Biotechnol Biofuels 8: 115.Google Scholar
  21. Gethins L., Guneser O., Demirkol A., Rea M.C., Stanton C., Ross R.P., Yuceer Y. and Morrissey J.P. 2015. Yeast 32: 67–76.Google Scholar
  22. Goshima T., Tsuji M., Inoue H., Yano S., Hoshino T. and Matsushika A. 2013a. Biosci Biotechnol Biochem 77: 1505–1510.Google Scholar
  23. Goshima T., Negi K., Tsuji M., Inoue H., Yano S., Hoshino T. and Matsushika A. 2013b. J Biosci Bioeng 116: 551–554.Google Scholar
  24. Guimaraes P.M., Teixeira J.A. and Domingues L. 2010. Biotechnol Adv 28: 375–384.Google Scholar
  25. Hazelwood L.A., Daran J.M., van Maris A.J., Pronk J.T. and Dickinson J.R. 2008. Appl Environ Microbiol 74: 2259–2266.Google Scholar
  26. Heo P., Yang T.J., Chung S.C., et al. 2013. J Biotechnol 167: 323–325.Google Scholar
  27. Hong J., Wang Y., Kumagai H. and Tamaki H. 2007. J Biotechnol 130: 114–123.Google Scholar
  28. Hoshida H., Murakami N., Suzuki A., Tamura R., Asakawa J., Abdel-Banat B.M., Nonklang S., Nakamura M. and Akada R. 2014. Yeast 31: 29–46.Google Scholar
  29. Hua D. and Xu P. 2011. Biotechnol Adv 29: 654–660.Google Scholar
  30. Iraqui I., Vissers S., Cartiaux M. and Urrestarazu A. 1998. Mol Gen Genet 257: 238–248.Google Scholar
  31. Jeong H., Lee D.-H., Kim S.H., Kim H.-J., Lee K., Song J.Y., Kim B.K., Sung B.H., Park J.C. and Sohn J.H. 2012. Eukaryotic cell 11: 1584–1585.Google Scholar
  32. Kallel-Mhiri H. and Miclo A. 1993. FEMS Microbiology Letters 111: 207–212.Google Scholar
  33. Kang Q., Appels L., Tan T. and Dewil R. 2014. The Scientific World Journal 2014.Google Scholar
  34. Kavscek M., Strazar M., Curk T., Natter K. and Petrovic U. 2015. Microb Cell Fact 14: 94.Google Scholar
  35. Kispal G., Steiner H., Court D.A., Rolinski B. and Lill R. 1996. J Biol Chem 271: 24458–24464.Google Scholar
  36. Kumar S., Singh S.P., Mishra I.M. and Adhikari D.K. 2009. J Ind Microbiol & Biotechnol 36: 1483–1489.Google Scholar
  37. Lachance M.-A. 2011. Kluyveromyces van der Walt. The Yeasts, Vol. 2 (Kurtzman CP, Fell JW & Boekhoet T, eds.), pp. 471–482. Elsevier, Amsterdam.Google Scholar
  38. Lachance M.A. 2007. FEMS Yeast Res 7: 642–645.Google Scholar
  39. Lane M.M. and Morrissey J.P. 2010. Fungal Biology Rev. 24: 17–26.Google Scholar
  40. Lane M.M., Burke N., Karreman R., Wolfe K.H., O’Byrne C.P. and Morrissey J.P. 2011. Antonie Van Leeuwenhoek 100: 507–519.Google Scholar
  41. Lee K.S., Kim J.S., Heo P., et al. 2013. Appl Microbiol Biotechnol 97: 2029–2041.Google Scholar
  42. Lertwattanasakul N., Kosaka T., Hosoyama A., et al. 2015. Biotechnol Biofuels 8: 47.Google Scholar
  43. Llorente B., Malpertuy A., Blandin G., Artiguenave F., Wincker P. and Dujon B. 2000. FEBS Lett 487: 71–75.Google Scholar
  44. Lopez C.L., Beaufort S., Brandam C. and Taillandier P. 2014. World J Microbiol Biotechnol 30: 2223–2229.Google Scholar
  45. Lopez-Alvarez A., Diaz-Perez A.L., Sosa-Aguirre C., Macias-Rodriguez L. and Campos-Garcia J. 2012. J Biosci Bioeng 113: 614–618.Google Scholar
  46. Loser C., Urit T. and Bley T. 2014. Appl Microbiol Biotechnol 98: 5397–5415.Google Scholar
  47. Loser C., Urit T., Keil P. and Bley T. 2015. Appl Microbiol Biotechnol 99: 1131–1144.Google Scholar
  48. Loser C., Urit T., Forster S., Stukert A. and Bley T. 2012. Appl Microbiol Biotechnol 96: 685–696.Google Scholar
  49. Mans R., van Rossum H.M., Wijsman M., Backx A., Kuijpers N.G., van den Broek M., Daran-Lapujade P., Pronk J.T., van Maris A.J. and Daran J.M. 2015. FEMS Yeast Res 15: fov004.Google Scholar
  50. Morrissey J.P., Etschmann M.M.W., Schrader J. and de Billerbeck G.M. 2015. Yeast 32: 3–16.Google Scholar
  51. Pecota D.C. and Da Silva N.A. 2005. Biotechnol Bioeng 92: 117–123.Google Scholar
  52. Pecota D.C., Rajgarhia V. and Da Silva N.A. 2007. J Biotechnol 127: 408–416.Google Scholar
  53. Plata C., Millán C., Mauricio J.C. and Ortega J.M. 2003. Food Microbiol. 20: 217–224.Google Scholar
  54. Porro D. and Branduardi P. 2009. Microb Cell Fact 8: 51.Google Scholar
  55. Radecka D., Mukherjee V., Mateo R.Q., Stojiljkovic M., Foulquie-Moreno M.R. and Thevelein J.M. 2015. FEMS Yeast Res 15: fov053.Google Scholar
  56. Ribeiro O., Gombert A.K., Teixeira J.A. and Domingues L. 2007. J Biotechnol 131: 20–26.Google Scholar
  57. Rocha S.N., Abrahao-Neto J. and Gombert A.K. 2011. Antonie Van Leeuwenhoek 100: 619–630.Google Scholar
  58. Rodrussamee N., Lertwattanasakul N., Hirata K., Suprayogi, Limtong S., Kosaka T. and Yamada M. 2011. Appl Microbiol Biotechnol 90: 1573–1586.Google Scholar
  59. Shrivastav M., De Haro L.P. and Nickoloff J.A. 2008. Cell research 18: 134–147.Google Scholar
  60. Suryawati L., Wilkins M.R., Bellmer D.D., Huhnke R.L., Maness N.O. and Banat I.M. 2008. Biotechnol Bioengin 101: 894–902.Google Scholar
  61. Suzuki A., Fujii H., Hoshida H. and Akada R. 2015. FEMS Yeast Res 15.Google Scholar
  62. Tsakraklides V., Brevnova E., Stephanopoulos G. and Shaw A.J. 2015. PLoS One 10: e0133434.Google Scholar
  63. Urit T., Stukert A., Bley T. and Loser C. 2012. Appl Microbiol Biotechnol 96: 1313–1323.Google Scholar
  64. Urit T., Manthey R., Bley T. and Löser C. 2013. Engineering in Life Sciences 13: 247–260.Google Scholar
  65. Verstrepen K.J., Derdelinckx G., Dufour J.-P., Winderickx J., Pretorius I.S., Thevelein J.M. and Delvaux F.R. 2003. FEMS Yeast Res. 4: 285–296.Google Scholar
  66. Vuralhan Z., Morais M.A., Tai S.L., Piper M.D. and Pronk J.T. 2003. Appl Environ Microbiol 69: 4534–4541.Google Scholar
  67. Wang R., Li L., Zhang B., Gao X., Wang D. and Hong J. 2013. J Ind Microbiol Biotechnol 40: 841–854.Google Scholar
  68. Yanase S., Hasunuma T., Yamada R., Tanaka T., Ogino C., Fukuda H. and Kondo A. 2010. Appl Microbiol Biotechnol 88: 381–388.Google Scholar
  69. Yang C., Hu S., Zhu S., Wang D., Gao X. and Hong J. 2015. World J Microbiol Biotechnol 31: 1641–1646.Google Scholar
  70. Yarimizu T., Nonklang S., Nakamura J., et al. 2013. Yeast 30: 485–500.Google Scholar
  71. Zhang B., Li L., Zhang J., Gao X., Wang D. and Hong J. 2013. J Ind Microbiol Biotechnol 40: 305–316.Google Scholar
  72. Zhang B., Zhang J., Wang D., Gao X., Sun L. and Hong J. 2015. Data Brief 5: 179–186.Google Scholar
  73. Zhang J., Zhang B., Wang D., Gao X., Sun L. and Hong J. 2015. Metab Eng 31: 140–152.Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  • Javier A. Varela
    • 1
  • Loughlin Gethins
    • 1
    • 2
  • Catherine Stanton
    • 2
    • 3
  • Paul Ross
    • 1
    • 3
  • John P. Morrissey
    • 1
    Email author
  1. 1.School of MicrobiologyUniversity College CorkCorkIreland
  2. 2.Teagasc Research CentreFermoy, Co. CorkIreland
  3. 3.Alimentary Pharmabiotic Centre, Microbiome InstituteUniversity College CorkCorkIreland

Personalised recommendations