Phytase of the Unconventional Yeast Pichia anomala: Production and Applications

  • Swati JoshiEmail author
  • Tulasi Satyanarayana


Most of cereal and legume seeds and their by-products contain 1–2% phytic acid (myo-inositol-1,2,3,4,5,6-hexakis dihydrogen phosphate) that represents >60% of total phosphorus content in plant products. A large portion of phytic acid in various plant seeds is in the form of salts called phytates. The phytate phosphorus is scarcely available to monogastrics (non-ruminants) because of insufficient levels of phytic acid hydrolysing gastric enzymes in them. Inorganic phosphorus (Pi) is supplemented in diets designed for such animals, which include swine, poultry, and fish to meet their Pi requirement. The unutilized phytate P is excreted that becomes an environmental pollutant in areas of intensive animal rearing. Excessive phytate P from soils flows to lakes and the sea that causes eutrophication, algal blooms and death of aquatic organisms. Furthermore, the negatively charged phosphate groups on phytic acid chelates positively charged metal ions of nutritional importance including Fe2+, Ca2+, Zn2+, Cu2+, Mg2+, Mn2+, causing poor absorption of the bound metals in gastrointestinal (GI) tract. This is one of the significant factors for causing wide-spread nutritional deficiencies of calcium, iron, and zinc in countries where plant based diets are predominantly consumed. Challenges in the areas of environmental sustainability, animal and human nutrition and health have prompted research on phytases. This review focuses on the production, properties and applications of native and recombinant phytases of Pichia anomala and scope of improving its potential through protein engineering.


Pichia anomala Phytic acid Native phytase Recombinant phytase Dephytinization 


  1. Casey, A. 2004. J. Biotechnol. 110:313–322.Google Scholar
  2. Cho, J.S., Lee, C.W., Kang, S.H., Lee, J.C., Bok, J.D., Moon, Y.S., Lee, H.G., Kim, S.C. and Choi, Y.J. 2003. Curr. Microbiol. 47:290–294.Google Scholar
  3. Fredlund, E., Broberg, A., Boysen, M.E., Kenne, L. andSchn¨urer, J. 2004b. Appl. Microbiol. Biotechnol. 64:403–409.Google Scholar
  4. Garcia-Estepa, R.M., Guerra-Hernandez, E. and Garcia-Villanova, B. 1999. Food Res. Int. 32:217–21.Google Scholar
  5. Greiner, R., Konietzny, U. and Jany, K.D. 1993. Arch. Biochem. Biophys. 303:107–113.Google Scholar
  6. Hara, A., Ebina, S., Kondo, A. and Funagua, T. 1985. Agric. Biol. Chem. 49:3539–3544.Google Scholar
  7. Harland, B.F. and Morris, E.R. 1995. Nutr. Res. 15:733–754.Google Scholar
  8. Hassan, S., Altaff, K. and Satyanarayana, T. 2009. Pak. J. Nutr. 8:341–344.Google Scholar
  9. Howson, S.J. and Davis, R.P. 1983. Enzyme Microb. Technol. 5:377–389.Google Scholar
  10. Huang, W.C. and Tang, I.C. 2006. In: Bioprocessing for Value-Added Products from Renewable Resources: New Technologies and Applications (ed.Yang, S.T), Elsevier, The Netherlands, pp. 185–224.Google Scholar
  11. Huebel, F. and Beck, E. 1996. Plant Physiol. 112:1429–1436.Google Scholar
  12. Ingvar, S. and Petter, M. 2011. Antonie van Leeuwenhoek 99:113–119.Google Scholar
  13. Pallauf, J. And Rimbach, G. 1997. Arch. Anim. Nutr. 50:301–31.Google Scholar
  14. Joshi, S. and Satyanarayana, T. 2014. J. Ind. Microbiol. Biotechnol. 41:977–87.Google Scholar
  15. Joshi, S. and Satyanarayana, T. 2015a. J. Ind. Microbiol. Biotechnol.42:1389–1400.Google Scholar
  16. Joshi, S. and Satyanarayana, T. 2015b. Appl. Biochem. Biotechnol. 176:1351–69.Google Scholar
  17. Kaur, P. and Satyanarayana, T. 2005. Process Biochem. 40:3095–3102.Google Scholar
  18. Kaur, P. and Satyanarayana, T. 2010. J. Appl. Microbiol. 108:2041–2049.Google Scholar
  19. Kaur, P., Singh, B., Böer, E., Straube, N., Piontek, M., Satyanarayana, T. and Kunze, G. 2010. J. Biotechnol. 149:8–15.Google Scholar
  20. Kerovuo, J., Lauraeus, M., Nurminen, P., Kalkkinen, N. and Apajalahti, J. 1998. Appl. Environ. Microbiol. 64:2079–2085.Google Scholar
  21. Kerovuo, J., Rouvinen, J. and Hatzack, F. 2000. Biochem. J. 352:623–628.Google Scholar
  22. Kim, Y.O., Kim, H.K., Bae, K.S., Yu, J.H. and Oh, T.K. 1998. Enzyme Microb. Technol. 22:2–7.Google Scholar
  23. Kim, H.W., Kim, Y.O., Lee, J.H., Kim, K.K. and Kim, Y.J. 2003.c. Biotechnol. Lett. 25:1231–1234.Google Scholar
  24. Konietzny, U. and Greiner, R. 2002. Int. J. Food. Sci. Technol. 37:91–812.Google Scholar
  25. Kumar, S., Tsai, C.J. and Nussinov, R. 2000. Protein Eng. 13:179–191.Google Scholar
  26. Latiffi, A.A., Salleh, A.B., Rahman, R.N., Oslan, S.N. and Basri, M. 2013. Genes Genet. Syst. 88 :85–91.Google Scholar
  27. Maugenest, S., Martinez, I., Godin, B., Perez, P. and Lescure, A.M. 1999. Plant Mol. Biol. 39:503–514.Google Scholar
  28. Maurya A.K., Parashar D. and Satyanarayana T. 2017. Int. J. Biol. Macromol. 94:36–44.Google Scholar
  29. McCollum, E.V. and Hart, E.B. 1908. J. Biol. Chem. 4:497–500.Google Scholar
  30. Mullaney, E.J., Daly, C.B. and Ullah, A.H. 2000. Adv. Appl. Microbiol. 47:157–99.Google Scholar
  31. Nakano, T., Joh, T., Tokumoto, E. and Hayakawa, T. 1999. Food Sci. Technol. Res. 5:18–23.Google Scholar
  32. Nelson, T.S., Sheih, T.R., Wodzinski, R.J. and Ware, J.H. 1971. J. Nutr. 101:1289–1294.Google Scholar
  33. Oh, B.C., Choi, W.C., Park, S., Kim, Y.O. and Oh, T.K. 2004. Appl. Microbiol. Biotechnol. 63:362–372.Google Scholar
  34. Pasamontes, L., Haiker, M., Wyss, M., Tessier, M. and Van Loon, A.P.G.M. 1997. Appl. Environ. Microbiol. 63:1696–1700.Google Scholar
  35. Quan, C.S., Tian, W.J., Fan, S.D. and Kikuchi, Y.I. 2004. J. Biosci. Bioeng. 97:260–266.Google Scholar
  36. Raboy,V. 1997. In: Cellular and Molecular Biology of Plant Seed Development(eds. B.A. Larkins and I.K. Vasil), Kluwer Academic Publishers, Dordrecht, pp. 441–447.Google Scholar
  37. Rao, D.E.C.S., Rao, K.V., Reddy, T.P. and Reddy, V.D. 2009. Crit. Rev. Biotechnol. 29:182–198.Google Scholar
  38. Rapoport, S., Leva, E. and Guest, G.M. 1941. J. Biol. Chem. 139:621–632.Google Scholar
  39. Sajidan, A., Farouk, A., Greiner, R., Jungblut, P., Mueller, E.C. and Borriss, R. 2004. Appl. Microbiol. Biotechnol. 65:110–118.Google Scholar
  40. Sano, K., Fukuhara, H. and Nakamura, Y. 1999. Biotechnol. Lett. 21:33–38.Google Scholar
  41. Satio, T., Kohno, M., Tsumura, K., Kugimiya, W. and Kito, M. 2001. Biosci. Biotechnol. Biochem. 65:884–887.Google Scholar
  42. Segueilha, L., Lambrechts, C., Boze, H., Moulin, G. and Galzy, P. 1992. J. Ferment. Bioeng. 74:7–11.Google Scholar
  43. Singh, B. and Satyanarayana, T. 2008. Bioresour. Technol. 99:2824–2830.Google Scholar
  44. Spencer, J.F.T. and Spencer, D.M. 1997.In: Yeasts in Natural and Artificial Habitats (eds. J.F.T. Spencer and D.M. Spencer), Springer, Berlin, pp. 33–58.Google Scholar
  45. Swick, R.A. 2002. Glob. Aquacult. Advocate. 5:46–49.Google Scholar
  46. Tambe, S.M., Kaklij, G.S., Kelkar, S.M. and Parekh, L.J.1994. J. Ferment. Bioeng. 77:23–27.Google Scholar
  47. Van Eck, J.H., Prior, B.A. and Brandt, E.V. 1993. J. Gen. Microbiol. 139:1047–1054.Google Scholar
  48. Verma, D. and Satyanarayana, T. 2012. Afr. J. Biotechnol. 11:13705–13709.Google Scholar
  49. Vohra, A. 2002b. Production, purification, characterization and application of phytase from Pichia anomala (Hansen) Kurtzman. PhD thesis.Google Scholar
  50. Vohra, A. and Satyanarayana, T. 2001. Biotechnol. Lett. 23:551–554.Google Scholar
  51. Vohra, A. and Satyanarayana, T. 2002a. Process Biochem. 37:999–1004.Google Scholar
  52. Vohra, A. and Satyanarayana, T. 2002c. World J. Microbiol. Biotechnol.18:687–691.Google Scholar
  53. Vohra, A. and Satyanarayana, T. 2003 Crit. Rev. Biotechnol. 23:29–60.Google Scholar
  54. Vohra, A. and Satyanarayana, T. 2004. J. Appl. Microbiol. 97:471–476.Google Scholar
  55. Vohra, A., Rastogi, S.K. and Satyanarayana, T. 2006. World J. Microbiol. Biotechnol. 22:553–558.Google Scholar
  56. Wang, Y., Yao, B., Zeng, H., Shi, X., Cao, S., Yuan, T. and Fan, Y. 2001. Wei sheng wu xue bao 41:198–203.Google Scholar
  57. Wang, Y., Wang, Z., Du, G., Hu, Z., Liu, L., Li, J. and Chen, J. 2009. Bioresour. Techol. 100:1343–1349.Google Scholar
  58. Waterham, H.R., Digan, M.E., Koutz, P.J., Lair, S.V. and Cregg, J. 1997. Gene 186:37–44.Google Scholar
  59. Wyss, M., Pasamontes, L., Remy, R., Kohler, J., Kusznir, E., Gadient, M., Muller, F. and Van loon, A.P.G.M. 1998. Appl. Environ. Microbiol. 64:4446–4451.Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  1. 1.National Institute of Occupational Health (NIOH)AhmedabadIndia
  2. 2.Division of Biological Sciences and EngineeringNetaji Subhas Institute of TechnologyDwarkaIndia

Personalised recommendations