Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

Linear regulator is an area-efficient component for voltage regulation that could achieve excellent power supply ripple rejection. With no switching activities as compared to a switched-inductor or switched-capacitor power converter, it can serve as a well-controlled power source for digital and especially noise-sensitive analog circuits. It is very suitable for miniature and low-power systems, such as wireless power receivers for portable and implantable applications. This chapter starts with the basic topologies of linear regulators followed by control loop design. Various circuit techniques are demonstrated through the design of two fully-integrated examples that were implemented in 65 nm and 28 nm bulk CMOS processes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu Y, Wang Y, Pan Q et al (2015) A fully-integrated low-dropout regulator with full-spectrum power supply rejection. IEEE Trans Circuits Syst I Regul Pap 62:707–716. doi:10.1109/TCSI.2014.2380644

    Article  MathSciNet  Google Scholar 

  2. Lu Y, Li C, Zhu Y et al (2016) A 312 ps response-time LDO with enhanced super source follower in 28 nm CMOS. Electron Lett 52:1368–1370. doi:10.1049/el.2016.1719

    Article  Google Scholar 

  3. Lu Y, Ki W-H, Yue CP (2016) An NMOS-LDO regulated switched-capacitor DC–DC converter with fast-response adaptive-phase digital control. IEEE Trans Power Electron 31:1294–1303. doi:10.1109/TPEL.2015.2420572

  4. den Besten GW, Nauta B (1998) Embedded 5 V-to-3.3 V voltage regulator for supplying digital IC’s in 3.3 V CMOS technology. IEEE J Solid State Circuits 33:956–962. doi:10.1109/4.701230

    Article  Google Scholar 

  5. Rincon-Mora G, Allen PE (1998) A low-voltage, low quiescent current, low drop-out regulator. IEEE J Solid State Circuits 33:36–44. doi:10.1109/4.654935

    Article  Google Scholar 

  6. Lam Y-H, Ki W-H (2008) A 0.9V 0.35μm adaptively biased CMOS LDO regulator with fast transient response. In: 2008 IEEE international solid-state circuits conference – (ISSCC), pp 442–626

    Google Scholar 

  7. El-Nozahi M, Amer A, Torres J et al (2010) High PSR low drop-out regulator with feed-forward ripple cancellation technique. IEEE J Solid State Circuits 45:565–577. doi:10.1109/JSSC.2009.2039685

    Article  Google Scholar 

  8. Ho M, Leung KN, Mak K-L (2010) A low-power fast-transient 90-nm low-dropout regulator with multiple small-gain stages. IEEE J Solid State Circuits 45:2466–2475. doi:10.1109/JSSC.2010.2072611

    Google Scholar 

  9. Leung KN, Mok PKT (2003) A capacitor-free CMOS low-dropout regulator with damping-factor-control frequency compensation. IEEE J Solid State Circuits 38:1691–1702. doi:10.1109/JSSC.2003.817256

    Article  Google Scholar 

  10. Hazucha P, Karnik T, Bloechel BA et al (2005) Area-efficient linear regulator with ultra-fast load regulation. IEEE J Solid State Circuits 40:933–940. doi:10.1109/JSSC.2004.842831

    Article  Google Scholar 

  11. Gupta V, Rincon-Mora GA (2007) A 5mA 0.6μm CMOS miller-compensated LDO regulator with −27dB worst-case power-supply rejection using 60pF of on-chip capacitance. In: 2007 IEEE international solid-state circuits conference – (ISSCC), pp 520–521

    Google Scholar 

  12. Man TY, Leung KN, Leung CY et al (2008) Development of single-transistor-control LDO based on flipped voltage follower for SoC. IEEE Trans Circuits Syst I Regul Pap 55:1392–1401. doi:10.1109/TCSI.2008.916568

    Article  MathSciNet  Google Scholar 

  13. Guo J, Leung KN (2010) A 6-μW chip-area-efficient output-capacitorless LDO in 90-nm CMOS technology. IEEE J Solid State Circuits 45:1896–1905. doi:10.1109/JSSC.2010.2053859

    Article  Google Scholar 

  14. Gupta V, Rincon-Mora G., Raha P (2004) Analysis and design of monolithic, high PSR, linear regulators for SoC applications. In: Proceedings of IEEE international SOC conference, pp 311–315

    Google Scholar 

  15. Al-Shyoukh M, Lee H, Perez R (2007) A transient-enhanced low-quiescent current low-dropout regulator with buffer impedance attenuation. IEEE J Solid State Circuits 42:1732–1742. doi:10.1109/JSSC.2007.900281

    Article  Google Scholar 

  16. Carvajal RG, Ramirez-Angulo J, Lopez-Martin A et al (2005) The flipped voltage follower: a useful cell for low-voltage low-power circuit design. IEEE Trans Circuits Syst I Regul Pap 52:1276–1291. doi:10.1109/TCSI.2005.851387

    Article  Google Scholar 

  17. Gray PR, Hurst P, Lewis S, Meyer RG (2009) Analysis and design of analog integrated circuits, 5th edn. Wiley, New York

    Google Scholar 

  18. Okuma Y, Ishida K, Ryu Y, et al (2010) 0.5-V input digital LDO with 98.7% current efficiency and 2.7-μA quiescent current in 65nm CMOS. In: 2010 IEEE custom integrated circuits conference (CICC), pp 1–4

    Google Scholar 

  19. Chen W-C, Ping S-Y, Huang T-C et al (2014) A switchable digital–analog low-dropout regulator for analog dynamic voltage scaling technique. IEEE J Solid State Circuits 49:740–750. doi:10.1109/JSSC.2013.2297395

    Article  Google Scholar 

  20. Gangopadhyay S, Somasekhar D, Tschanz JW, Raychowdhury A (2014) A 32 nm embedded, fully-digital, phase-locked low dropout regulator for fine grained power management in digital circuits. IEEE J Solid State Circuits 49:2684–2693. doi:10.1109/JSSC.2014.2353798

    Article  Google Scholar 

  21. Nasir SB, Gangopadhyay S, Raychowdhury A (2016) All-digital low-dropout regulator with adaptive control and reduced dynamic stability for digital load circuits. IEEE Trans Power Electron 31:8293–8302. doi:10.1109/TPEL.2016.2519446

    Google Scholar 

  22. Huang M, Lu Y et al (2016) A fully integrated digital LDO with coarse–fine-tuning and burst-mode operation. IEEE Trans Circuits Syst II Exp Briefs 63:683–687. doi:10.1109/TCSII.2016.2530094

    Article  Google Scholar 

  23. Huang M, Lu Y et al (2016) Limit cycle oscillation reduction for digital low dropout regulators. IEEE Trans Circuits Syst II Exp Briefs 63:903–907. doi:10.1109/TCSII.2016.2534778

    Article  Google Scholar 

  24. Huang M, Lu Y, et al (2016) A digital LDO with transient enhancement and limit cycle oscillation reduction. In: 2016 IEEE Asia Pacific conference on circuits and systems (APCCAS), pp 1–4. doi:10.1109/APCCAS.2016.7803886

  25. Lu Y, Ki W-H, Yue CP (2014) 17.11 A 0.65ns-response-time 3.01ps FOM fully-integrated low-dropout regulator with full-spectrum powersupply- rejection for wideband communication systems. In: 2014 IEEE international solid-state circuits conference – (ISSCC), pp 306–307. doi:10.1109/ISSCC.2014.6757446

  26. Bulzacchelli JF, Toprak-Deniz Z, Rasmus TM et al (2012) Dual-loop system of distributed microregulators with high DC accuracy, load response time below 500 ps, and 85-mV dropout voltage. IEEE J Solid State Circuits 47:863–874. doi:10.1109/JSSC.2012.2185354

    Article  Google Scholar 

  27. Zhan C, Ki W-H (2014) Analysis and design of output-capacitor-free low-dropout regulators with low quiescent current and high power supply rejection. IEEE Trans Circuits Syst I Regul Pap 61:625–636. doi:10.1109/TCSI.2014.2300847

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Lu, Y., Ki, WH. (2018). Linear Regulators for WPT. In: CMOS Integrated Circuit Design for Wireless Power Transfer. Analog Circuits and Signal Processing. Springer, Singapore. https://doi.org/10.1007/978-981-10-2615-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2615-7_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2614-0

  • Online ISBN: 978-981-10-2615-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics