Skip to main content

Optically Active Polymers: A Systematic Study on Syntheses and Properties

  • Chapter
  • First Online:
Optically Active Polymers

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

Abstract

Optically active materials are those which can easily rotate a beam of transmitted plane-polarized light into plane of polarization containing unequal amounts of corresponding enantiomers. The origin of optical activity is made in the chiral elements of a polymer such as centres or axes of chiral for long-range conformational order in a macromolecule. In fact, most naturally occurring macromolecules possess the ability to organize to more complex high structure rather than single one and manifest their functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Nakano, Y. Okamoto, K. Hatada, Asymmetric polymerization of triphenylmethyl methacrylate leading to a one-handed helical polymer: mechanism of polymerization. J. Am. Chem. Soc. 114, 1318–1329 (1992)

    Article  CAS  Google Scholar 

  2. J.S. Moore, S.I. Stupp, Materials chemistry of chiral macromolecules. 1. Synthesis and phase transitions. J. Am. Chem. Soc. 114, 3429–3441 (1992)

    Article  CAS  Google Scholar 

  3. K.L. Singfield, G.R. Brown, Optically active polyethers. 1. Studies of the crystallization in blends of the enantiomers and the stereoblock form of Poly(epichlorohydrin). Macromolecules 28, 1290–1297 (1995)

    Google Scholar 

  4. H. Schlaad, H. Kukula, B. Smarsly, M. Antonietti, T. Pakula, Solid-state morphologies of linear and bottlebrush-shaped polystyrene—poly(Z-L-lysine) block copolymers. Polymer 43, 5321–5328 (2002)

    Article  CAS  Google Scholar 

  5. J. Pecher, S. Mecking, Nanoparticles from step-growth coordination Polymerization. Macromolecules 40, 7733–7735 (2007)

    Article  CAS  Google Scholar 

  6. B. Zhao, J. Deng, J. Deng, Emulsification-Induced homohelicity in racemic helical polymer for preparing optically active helical polymer nanoparticles. Macromol. Rapid Commun. 37, 568–574 (2016)

    Article  CAS  Google Scholar 

  7. R. Wang, Y. Zheng, X. Li, J. Chen, J. Cui, J. Zhang, X. Wan, Optically active helical vinylbiphenyl polymers with reversible thermally induced stereomutation. Polym. Chem. 7, 3134–3144 (2016)

    Google Scholar 

  8. Y. Miyagi, T. Hirao, T. Haino, F. Sanda, Synthesis of optically active conjugated polymers containing platinum in the main chain: control of the higher-order structures by substituents and solvents. J. Poly. Sci. Part A Poly. Chem. 53, 2452–2461 (2015)

    Article  CAS  Google Scholar 

  9. H. Huang, C. Chen, D. Zhang, J. Deng, Y. Wu, Helical substituted polyacetylene derived fluorescent microparticles prepared by precipitation polymerization. Macromol. Rapid Commun. 35, 908–915 (2014)

    Article  CAS  Google Scholar 

  10. C. Song, X. Liu, D. Liu, C. Ren, W. Yang, J. Deng, Optically active particles of chiral polymers 34, 1426–1445 (2013)

    Google Scholar 

  11. J. Liu, J.W.Y. Lam, B.Z. Tang, Acetylenic polymers: syntheses, structures, and functions. Chem. Rev. 109, 5799–5867 (2009)

    Article  CAS  Google Scholar 

  12. C.S. Daeffler, G.M. Miyake, J. Li, R.H. Grubbs, Partial kinetic resolution of oxanorbornenes by ring opening metathesis polymerization with a chiral ruthenium initiator. ACS Macro Lett. 3, 102–104 (2014)

    Article  CAS  Google Scholar 

  13. E. Yashima, K. Maeda, H. Iida, Y. Furusho, K. Nagai, Helical polymers: Synthesis, structures and functions. Chem. Rev. 109, 6102–6211 (2009)

    Article  CAS  Google Scholar 

  14. Z.B. Zhang, M. Motonaga, M. Fujiki, C.E. McKenna, The first optically active polycarbazoles. Macromolecules 36, 6956–6958 (2003)

    Article  CAS  Google Scholar 

  15. S. Jin, T.H. Tiefel, R. Wolfe, R.C. Sherwood, J.J. Mottine Jr., Optically transparent, electrically conductive composite medium. Science 255, 446–448 (1992)

    Article  CAS  Google Scholar 

  16. H.S. Kim, J.E. Park, M.K. Patel, H. Kim, D.S. Kim, S.K. Byeon, D. Lim, J. Kim, Optically transparent and electrically conductive NiO window layer for Si solar cells. Mat. Lett. 174, 10–13 (2016)

    Article  CAS  Google Scholar 

  17. L. Chen, Y. Chen, K. Yao, W. Zhou, F. Li, L. Chen, R. Hu, B.Z. Tang, A novel type of optically active helical liquid crystalline polymers: synthesis and characterization of poly (p-phenylene)s containing terphenyl mesogen with different terminal groups. J. Poly. Sci. Part A Poly. Chem. 47, 4723–4735 (2009)

    Google Scholar 

  18. Y. Suzuki, M. Shiotsuki, F. Sanda, T. Masuda, Chiral 1-methylpropargyl alcohol: a simple and powerful helical source for substituted polyacetylenes. Macromolecules 40, 1864–1867 (2007)

    Article  CAS  Google Scholar 

  19. T. Aoki, T. Kaneko, N. Maruyama, A. Sumi, M. Takahashi, T. Sato, M. Teraguchi, Helix-sense-selective polymerization of phenylacetylene having two hydroxy groups using a chiral catalytic system. J. Am. Chem. Soc. 125, 6346–6347 (2003)

    Article  CAS  Google Scholar 

  20. B.S. Li, K.K.L. Cheuk, L. Ling, J. Chen, X. Xiao, C. Bai, B.Z. Tang, Synthesis and hierarchical structures of amphiphilic polyphenylacetylenes carrying L-valine pendants. Macromolecules 36, 77–85 (2003)

    Article  CAS  Google Scholar 

  21. J.W.Y. Lam, B.Z. Tang, Functional polyacetylenes. Accounts Chem. Res. 38, 745–754 (2005)

    Article  CAS  Google Scholar 

  22. K. Okoshi, S.I. Sakurai, S. Ohsawa, J. Kumaki, E. Yashima, Control of main-chain stiffness of a helical poly(phenylacetylene) by switching on and off the intramolecular hydrogen bonding through macromolecular helicity inversion. Angew. Chem. Int. Ed. 48, 8173–8176 (2006)

    Article  Google Scholar 

  23. S. Wu, N. Yang, L. Yang, J. Cao, J. Liu, A novel type of optically active helical polymers: synthesis and characterization of poly(-unsaturated ketone). J. Poly. Sci. Part A Poly. Chem. 48, 1441–1448 (2010)

    Google Scholar 

  24. S. Zahmatkesh, M.R. Vakili, Synthesis and characterization of new optically active poly (ethyl l-lysinamide)s and poly (ethyl L-lysinimide)s. J. Amino Acids 2010, 1–6 (2010)

    Article  CAS  Google Scholar 

  25. S.E. Mallakpour, A.R. Hajipour, S. Khoee, optically active poly(amide–imide)s by direct polycondensation of aromatic dicarboxylic acid with aromatic diamines. Europ. Poly. J. 38, 2011–2016 (2002)

    Article  CAS  Google Scholar 

  26. S.E. Mallakpour, A.R. Hajipour, K. Faghihi, Microwave-assisted synthesis of optically active poly(amide-imide)s with benzophenone and L-alanine linkages. Europ. Poly. J. 37, 119–124 (2001)

    Article  CAS  Google Scholar 

  27. K. Faghihi, K. Zamani, A. Mirsamie, M.R. Sangi, Microwave-assisted rapid synthesis of novel optically active poly(amide-imide)s containing hydantoins and thiohydantoins in main chain. Europ. Poly. J. 39, 247–254 (2003)

    Article  CAS  Google Scholar 

  28. L.I. Subbotina, A.A. Bakanova, E.R. Kofanov, E.N. Popova, E.N. Vlasova, V.M. Svetlichnyi, optically active polyamidoimides based on amino acids containing cyclohexane fragment. Rus. J. Appl. Chem. 88, 1661–1666 (2015)

    Article  CAS  Google Scholar 

  29. P. Rattanatraicharoen, K. Shintaku, K. Yamabuki, T. Oishi, K. Onimura, Synthesis and chiroptical properties of helical poly(phenylacetylene) bearing optically active chiral oxazoline Pendants. Polymer 53, 2567–2573 (2012)

    Article  CAS  Google Scholar 

  30. Q.S. Hu, C. Sun, C.E. Monaghan, Optically active dendronized polymers as a new type of macromolecular chiral catalysts for asymmetric catalysis. Tetrahed. Lett. 43, 927–930 (2002)

    Article  CAS  Google Scholar 

  31. J. Luo, M. Haller, H. Li, H.-Z. Tang, A.K.-Y. Jen, K. Jakka, C.-H. Chou, C.-F. Shu, A side-chain dendronized nonlinear optical polyimide with large and thermally stable electrooptic activity. Macromolecules 37, 248–250 (2004)

    Google Scholar 

  32. S. Mallakpour, S. Habibi, Microwave-promoted synthesis of new optically active poly(ester-imide)s derived from N, N’-(pyromellitoyl)-bis-L-leucine diacid chloride and aromatic diols. Europ. Poly. J. 39, 1823–1829 (2003)

    Article  CAS  Google Scholar 

  33. F. Andreani, L. Angiolini, V. Grenci, E. Salatelli, Optically active polyalkylthiophenes: synthesis and polymerization of chiral, symmetrically substituted, quinquethiophene monomer. Synth. Metals 145, 221–227 (2004)

    Article  CAS  Google Scholar 

  34. R.H. Mitchell, Y.H. Lai, R.V. Williams, N-Bromosuccinimide-dimethylformamide: a mild, selective nuclear monobromination reagent for reactive aromatic compounds. J. Org. Chem. 44, 4733–4737 (1979)

    Article  CAS  Google Scholar 

  35. K. Tamao, S. Kodama, I. Nakajima, M. Kumada, A. Minato, K. Suzuki, Nickel-phosphine complex-catalyzed Grignard coupling—II: grignard coupling of heterocyclic compounds. Tetrahedron 38, 3347–3354 (1982)

    Article  CAS  Google Scholar 

  36. F. Andreani, L. Angiolini, D. Caretti, E. Salatelli, Synthesis and polymerization of 3,3″-di[(S)-(+)-2-methylbutyl]-2,2′:5′,2″-terthiophene: a new monomer precursor to chiral regioregular poly(thiophene). J. Mater. Chem. 8, 1109–1111 (1998)

    Article  CAS  Google Scholar 

  37. A. Natansohn, in Symposium on Azobenzene-Containing Materials (1998:) Proceedings of the symposium on azobenzene-containing materials. Macromolecular Symposia, vol. 137, 1–165 (Boston, MA, 1998)

    Google Scholar 

  38. A. Natansohn, P. Rochon, M.S. Ho, C. Barrett, Azo polymers for reversible optical storage. 6. Poly[4-[2-(methacryloyloxy)ethyl]azobenzene]. Macromolecules 28, 4179–4183 (1995)

    Google Scholar 

  39. Y. Wu, Q. Zhang, A. Kanazawa, T. Shiono, T. Ikeda, Y. Nagase, Photo induced alignment of polymer liquid crystals containing azobenzene moieties in the side chain. 5. Effect of the azo contents on alignment behavior and enhanced response. Macromolecules 32, 3951–3956 (1999)

    Google Scholar 

  40. C.R. Mendonca, A. Dhanabalan, D.T. Balogh, L. Misoguti, D.S.D. Santos Jr., M.A. Pereira-da-Silva, J.A. Giacometti, S.C. Zilio, O.N. Oliveira Jr., Optically induced birefringence and surface relief gratings in composite langmuir—blodgett (LB) films of poly[4-[[2-(methacryloyloxy)ethyl]ethylamino]-2-chloro-4-nitroazobenzene](HPDR13) and cadmium stearate. Macromolecules 32, 1493–1499 (1999)

    Google Scholar 

  41. K. Ichimura, Photoalignment of liquid-crystal systems. Chem. Rev. 100, 1847–1874 (2000)

    Article  CAS  Google Scholar 

  42. C. Zhao, K. Ouyang, N. Yang, J. Zhang, Z. Yang, Synthesis and properties of optically active helical polyethers bearing indole or carbazole derivatives. Macromol. Res. 24, 393–399 (2016)

    Article  CAS  Google Scholar 

  43. L. Angiolini, L. Giorgini, H. Li, A. Golemme, F. Mauriello, R. Termine, Synthesis, characterization and photoconductive properties of optically active methacrylic polymers bearing side-chain 9-phenylcarbazole moieties. Polymer 51, 368–377 (2010)

    Article  CAS  Google Scholar 

  44. S. Mallakpour, A. Zadehnazari, Advances in synthetic optically active condensation polymers—A review, eXPRESS. Poly. Lett. 5, 142–181 (2011)

    Article  CAS  Google Scholar 

  45. A. Natansohn, P. Rochon, Photoinduced motions in azo-containing polymers. Chem. Rev. 102, 4139–4175 (2002)

    Article  CAS  Google Scholar 

  46. L. Li, H.C. Dong, Y. Zhang, Z.D. Xu, X.H. Fan, X.F. Chen, Q.F. Zhou, Photoinduced holographic phase grating buried in azobenzene side-chain polymer films with a chiral group. Chinese J. Polym. Sci. 21, 93–98 (2003)

    CAS  Google Scholar 

  47. T. Verbiest, M. Kauranen, A. Persoon, Second-order nonlinear optical properties of chiral thin films. J. Mat. Chem. 9, 2005–2012 (1999)

    Article  CAS  Google Scholar 

  48. S.A. Kandjani, R. Barille, J.M. Nunzi, R. Kheradmand, H. Tajalli, Light induced 2D chiral structure on the surface of azo-polymer films. Phys. Stat. Solid 8, 2773–2776 (2011)

    CAS  Google Scholar 

  49. A. Apostoluk, J.M. Nunzi, C. Fiorini-Debuisschert, Photo-induction of surface relief gratings during all optical poling of polymer films. Opt. Lett. 29, 98–100 (2004)

    Article  Google Scholar 

  50. Y. Wu, A. Natansohn, P. Rochon, Photoinduced birefringence and surface relief gratings in polyurethane elastomers with azobenzene chromophore in the hard segment. Macromolecules 37, 6090–6095 (2004)

    Article  CAS  Google Scholar 

  51. L. Angiolini, R. Bozio, A. Dauru, L. Giorgini, D. Pedron, G. Turco, Photomodulation of the chiroptical properties of new chiral methacrylic polymers with side chain azobenzene moieties. Chem. Eur. J. 8, 4241–4247 (2002)

    Article  CAS  Google Scholar 

  52. K.A. Gunay, N. Schuwer, H.A. Klok, Synthesis and post-polymerization modification of poly (pentafluorophenyl methacrylate) brushes. Polym. Chem. 3, 2186–2192 (2012)

    Article  CAS  Google Scholar 

  53. A.J. Wilson, M. Masuda, R.P. Sijbesma, E.W. Meijer, Chiral amplification in the transcription of supramolecular helicity into a polymer backbone. Chem. Int. Ed. 44, 2275–2279 (2005)

    Article  CAS  Google Scholar 

  54. L. Angiolini, R. Bozio, T. Dainese, L. Giorgini, A. Golemme, F. Mauriello, D. Pedron, R. Termine, Photoresponsive polymers containing side-chain chiral azocarbazole chromophores as multifunctional materials. Proc. SPIE 6653, 665305 (2007)

    Article  CAS  Google Scholar 

  55. L. Angiolini, T. Benelli, L. Giorgini, F. Mauriello, E. Salatelli, Chiroptical and thermoplastic acid sensors based on chiral methacrylic polymers containing azoaromatic moieties. Sens. Actuators B 126, 56–61 (2007)

    Article  CAS  Google Scholar 

  56. E. Sperotto, G.P.M.V. Klink, G.V. Koten, J.G. de Vries, The mechanism of the modified Ullmann reaction. Dalton Trans. 39, 10338–10351 (2010)

    Article  CAS  Google Scholar 

  57. D.W. Kim, H. Moon, S.Y. Park, S.I. Hong, Synthesis of photoconducting nonlinear optical side-chain polymers containing carbazole derivatives. React. Funct. Poly. 42, 73–86 (1999)

    Article  CAS  Google Scholar 

  58. L. Angiolini, T. Benelli. R. Bozio, A. Dauru, L. Giorgini, D. Pedron, E. Salatelli, Improvement of photoinduced birefringence properties of optically active methacrylic polymers through copolymerization of monomers bearing azoaromatic moieties. Macromolecules 39, 489–497 (2006)

    Google Scholar 

  59. C Carlini, L. Angiolini, D. Caretti, Photochromic Optically Active Polymers in Polymeric Materials Encyclopaedia. editor-in-chief J.C. Salomone (CRC Press, Boca Raton, 1996), vol. 7, pp 5116–5123

    Google Scholar 

  60. I.V. Taydakov, S.A. Ambrozevich, E.A. Varaksina, A.G. Vitukhnovsky, A.A. Tyutyunov, O.A. Melnik, Luminescent properties of a composite of acrylic polymers doped with Eu(III) complex for ink-jet printing applications. J. Russ. Laser Res. 37, 192–196 (2016)

    Google Scholar 

  61. L. Angiolini, T. Benelli, L. Giorgini, Synthesis and chiroptical properties of chiral azoaromatic dendrimers with a C3-symmetrical core. Chirality 22, 99–109 (2010)

    Article  CAS  Google Scholar 

  62. L. Angiolini, D. Caretti, L. Giorgini, E. Salatelli, Synthesis and chiroptical properties of optically active methacrylic polymers bearing the (S)- and/or (R)-2-hydroxysuccinimide moiety linked to the trans-azobenzene group in the side chain. Macromol. Chem. Phys. 201, 533–542 (2000)

    Article  CAS  Google Scholar 

  63. L. Angiolini, T. Benelli, L. Giorgini, A. Painelli, F. Terenziani, Chiral interactions in azobenzene dimers: a combined experimental and theoretical study. Chem. Eur. J. 11, 6053–6353 (2005)

    Article  CAS  Google Scholar 

  64. L. Angiolini, T. Benelli, L. Giorgini, E. Salatelli, R. Bozio, A. Dauru, D. Pedron, Synthesis, chiroptical properties and photoinduced linear birefringence of the homopolymer of (R)-3-methacryloyloxy-1-(4’-cyano-4-azobenzene) pyrrolidine and of the copolymers with the enantiomeric monomer. Europ. Poly. J. 41, 2045–2054 (2005)

    Article  CAS  Google Scholar 

  65. M. Ho, C. Barrett, J. Paterson, M. Esteghamatian, A. Natansohn, P. Rochon, Synthesis and optical properties of poly{(4-nitrophenyl)-[3-[N-[2-(methacryloyloxy) ethyl]- carbazolyl]]diazene}. Macromolecules 29, 4613–4618 (1996)

    Article  CAS  Google Scholar 

  66. V.A. Miller, R.R. Brown, E.B. Gienger Jr., US Patent 3 067 180 (1962)

    Google Scholar 

  67. J.S. Moore, S.I. Stupp, Room temperature polyesterification. Macromolecules 23, 65–70 (1990)

    Article  CAS  Google Scholar 

  68. L. Angiolini, T. Benelli, L. Giorgini, A. Golemme, F. Mauriello, E. Salatelli, R. Termine, Methacrylic polymers containing optically active side-chain carbazole: synthesis, characterization and photoconductive properties. Macromol. Chem. Phys. 209, 944–956 (2008)

    Article  CAS  Google Scholar 

  69. H. Katsumi, M. Nishikawa, F. Yamashita, M. Hashida, Development of polyethylene glycol-conjugated Poly-S-Nitrosated serum albumin, a novel S-Nitrosothiol for prolonged delivery of nitric oxide in the blood circulation In Vivo. J. Pharmacol. Exp. Therap. 314, 1117–1124 (2005)

    Article  CAS  Google Scholar 

  70. S. Wen, X. Bao, W. Shen, C. Gu, Z. Du, L. Han, D. Zhu, R. Yang, Synthesis of benzodithiophene based poly(aryleneethynylene)s: synthesis, optical properties and applications in organic solar cell. J. Poly. Sci. Part A: Poly. Chem. 52, 208–215 (2014)

    Article  CAS  Google Scholar 

  71. S.P. Webster, J.R. Seckl, B. Walker, P.R. Ward, T.D. Pallin, H.J. Dyke, T.R. Perrior, PCT Intl WO/2009/074789 (2009)

    Google Scholar 

  72. Q. Shi, H. Fan, Y. Liu, W. Hu, Y. Li, X. Zhan, A copolymer of benzodithiophene with TIPS side chains for enhanced photovoltaic performance. Macromolecules 44, 9173–9179 (2011)

    Article  CAS  Google Scholar 

  73. H. Ogoshi, T. Mizutani, Multifunctional and chiral porphyrins: model receptors for chiral recognition Acc. Chem. Res. 31, 81–89 (1998)

    Article  CAS  Google Scholar 

  74. X. Huang, K. Nakanishi, N. Berova, Porphyrins and metalloporphyrins: versatile circular dichroic reporter groups for structural studies. Chirality 12, 237–255 (2000)

    Article  CAS  Google Scholar 

  75. X. Huang, B.H. Richman, B. Borhan, N. Berova, K. Nakanishi, Zinc porphyrin tweezer in hosteguest complexation: determination of Absolute configurations of diamines, amino acids and amino alcohols by circular dichroism. J. Am. Chem. Soc. 120, 6185–6196 (1998)

    Article  CAS  Google Scholar 

  76. G. Proni, G. Pescitelli, X. Huang, K. Nakanishi, N. Berova, Magnesium tetraaryl porphyrin tweezer: a CD-sensitive host for absolute configurational assignments of achiral carboxylic acids. J. Am. Chem. Soc. 125, 12914–12927 (2003)

    Article  CAS  Google Scholar 

  77. T. Kurtan, N. Nesnas, Y. Li, X. Huang, K. Nakanishi, N. Berova, Chiral recognition by CD-sensitive dimeric zinc porphyrin host. 1. Chiroptical protocol for absolute configurational assignments of monoalcohols and primary monoamines. J. Am. Chem. Soc. 123, 5962–5973 (2001)

    Article  CAS  Google Scholar 

  78. J. Lu, L. Wu, L. Jing, X. Xu, X. Zhang, Synthesis, circular dichroism, and third-order nonlinear optical properties of optically active porphyrin derivatives bearing four chiral citronellal moieties. Dyes Pigm. 94, 169–174 (2012)

    Article  CAS  Google Scholar 

  79. V.V. Borovkov, J.M. Lintuluoto, M. Sugiura, Y. Inoue, R. Kuroda, Remarkable stability and enhanced optical activity of a chiral supramolecular bisporphyrin tweezer in both solution and solid state. J. Am. Chem. Soc. 124, 11282–11283 (2002)

    Article  CAS  Google Scholar 

  80. S. Tamaru, M. Takeuchi, M. Sano, S. Shinkai, Sol-gel transcription of sugar appended porphyrin assemblies into fibrous silica: unimolecular stacks versus helical bundles as templates. Angew. Chem. Int. Ed. 41, 853–856 (2002)

    Article  CAS  Google Scholar 

  81. S.I. Tamaru, M. Nakamura, M. Takeuchi, S. Shinkai, Rational design of a sugar appended porphyrin gelator that is forced to assemble into a one dimensional aggregate. Org. Lett. 3, 3631–3634 (2001)

    Article  CAS  Google Scholar 

  82. X.M. Guo, C. Jiang, T.S. Shi, Prepared chiral nanorods of a cobalt (II) porphyrin dimer and studied changes of UV-Vis and CD spectra with aggregate morphologies under different temperatures. Inorg. Chem. 46, 4766–4768 (2007)

    Article  CAS  Google Scholar 

  83. I.T. Ishi, J.H. Jung, S. Shinkai, Intermolecular porphyrinefullerene interactioncan reinforce the organogel structure of a porphyrin-appended cholesterol derivative. J. Mater. Chem. 10, 2238–2240 (2000)

    Article  Google Scholar 

  84. S. Tamaru, S. Uchino, M. Takeuchi, M. Ikeda, T. Hatano, S. Shinkai, A porphyrin based gelator assembly which is reinforced by peripheral urea groups and chirally twisted by chiral urea additives. Tetrahedron Lett. 43, 3751–3755 (2002)

    Article  CAS  Google Scholar 

  85. J. Lu, L. Wu, J. Jiang, X. Zhang, Helical nanostructures of an optically active metal free porphyrin with four optically active binaphthyl moieties: effect of metaleligand coordination on the morphology. Eur. J. Inorg. Chem. 25, 4000–4008 (2010)

    Article  CAS  Google Scholar 

  86. J. Lu, L. Wu, L. Jing, X. Xu, X. Zhang, Synthesis, circular dichroism and third-order nonlinear optical properties of optically active porphyrin derivatives bearing four chiral citronellal moieties. Dyes Pigm. 94, 169–174 (2012)

    Article  CAS  Google Scholar 

  87. T. Oishi, H. Gao, T. Nakamura, Y. Isobe K. Onimura, Asymmetric polymerizations of N-substituted maleimides bearing L-leucine ester derivatives and chiral recognition abilities of their polymers. Poly. J. 39, 1047–1059 (2007)

    Google Scholar 

  88. T. Oishi, K. Onimura, W. Sumida, T. Koyanagi, and H. Tsutsumi Asymmetric anionic polymerization of n-diphenyl-methylitaconimide with chiral ligand-organometal complex. Poly. Bull. 48, 317–325 (2002)

    Google Scholar 

  89. Y. Isobe, H. Tsutsumi, T. Oishi, Asymmetric polymerization of N-1-Naphthylmaleimide with chiral anionic initiator: preparation of highly optically active poly(N-1-naphthylmaleimide). Macromolecules 34, 7617–7623 (2001)

    Article  CAS  Google Scholar 

  90. Y. Isobe, K. Onimura, H. Tsutsumi, T. Oishi, Asymmetric anionic polymerization of N-1-naphthylmaleimide with chiral ligand-organometal complexes in toluene. J. Poly. Sci. Part A Poly. Chem. 39, 3556–3565 (2001)

    Google Scholar 

  91. K. Onimura, Y. Zhang, M. Yagyu, T. Oishi, Asymmetric anionic polymerization of optically active N-1-cyclohexylethylmaleimide. J. Poly. Sci. Part A Poly. Chem. 42, 4682–4692 (2004)

    Google Scholar 

  92. H. Gao, Y. Isobe, K. Onimura, T. Oishi, Synthesis and polymerization of novel (S)-N-maleoyl-L-leucine propargyl ester. Poly. J. 38, 1288–1291 (2006)

    Article  CAS  Google Scholar 

  93. H. Gao, Y. Isobe, K. Onimura, T. Oishi, Synthesis and asymmetric polymerization of (S)-N-maleoyl-L-leucine propargyl ester. J. Poly. Sci. Part A Poly. Chem. 45, 3722–3738 (2007)

    Google Scholar 

  94. S. Mallakpour, A. Zadehnazari, Novel optically active poly(amide-thioester-imide)s containing L-α-amino acids and thiadiazol anticorrosion group: production and characterization. High Perform. Poly. 25, 377–386 (2012)

    Article  CAS  Google Scholar 

  95. N. Nigam, S. Kumar, P.K. Dutta, S. Pei, T. Ghosh, Chitosan containing azo-based Schiff bases: thermal, antibacterial and birefringence properties for bio-optical devices. RSC Adv. 6, 5575–5581 (2016)

    Google Scholar 

  96. P.K. Dutta, S. Kumar, N. Nigam, T. Ghosh, S.P. Singh, P.K. Datta, L. An, T.F. Shi, Preparation, characterization and optical properties of a novel azo-based chitosan biopolymer. Mater. Chem. Phys. 120, 361–370 (2010)

    Google Scholar 

  97. V. Kitpreechavanich, A. Hayami, A. Talek, C.F.S. Chin, Y. Tashiro, K. Sakai, Simultaneous production of:L-lactic acid with high optical activity and a soil amendment with food waste that demonstrates plant growth promoting activity. J. Biosci. Bioeng. 122, 105–110 (2016)

    Article  CAS  Google Scholar 

  98. S.A. Baeurle, Multiscale modeling of polymer materials using field-theoretic methodologies: a survey about recent developments. J. Math. Chem. 46, 363–426 (2009)

    Article  CAS  Google Scholar 

  99. V.V. Shevchenko, A.V. Sidorenko, V.N. Bliznyuk, I.M. Tkachenko, O.V. Shekera, Azo-containing polyurethanes with nonlinear-optical properties. Poly. Sci. Ser. A 55, 1–31 (2013)

    Article  CAS  Google Scholar 

  100. A. Altomare, F. Ciardelli, L. Mellini, R. Solaro, Photoactive azobenzene polymers containing carbazole chromophores. Macromol. Chem. Phys. 205, 1611–1619 (2004)

    Article  CAS  Google Scholar 

  101. C. Engels, D.V. Steenwinckel, E. Hendrickx, M. Schaerlaekens, A. Persoons, C. Samyn, Efficient fully functionalized photorefractive polymethacrylates with infrared sensitivity and different spacer lengths. J. Mater. Chem. 12, 951–957 (2002)

    Article  CAS  Google Scholar 

  102. J. Hwang, J. Sohn, S.Y. Park, Synthesis and structural effect of multifunctional photorefractive polymers containing monolithic chromophores. Macromolecules 36, 7970–7976 (2003)

    Article  CAS  Google Scholar 

  103. J. Shi, Z. Jiang, S. Cao, Synthesis of carbazole-based photorefractive polymers via post-azo-coupling reaction. React. Funct. Polym. 59, 87–91 (2004)

    Article  CAS  Google Scholar 

  104. T. Kajitani, K. Okoshi, S. Sakurai, J. Kumaki, E. Yashima, Helix-sense controlled polymerization of a single phenyl isocyanide enantiomer leading to diastereomeric helical polyisocyanides with opposite helix-sense and cholesteric liquid crystals with opposite twist-sense. J. Am. Chem. Soc. 128, 708–709 (2006)

    Article  CAS  Google Scholar 

  105. E. Yashima, K. Maeda, T. Nishimura, Detection and amplification of chirality by helical polymers. Chem. Eur. J. 10, 42–51 (2004)

    Article  CAS  Google Scholar 

  106. A.J. Wilson, M. Masuda, R.P. Sijbesma, E.W. Meijer, Chiral amplification in the transcription of supramolecular helicity into a polymer backbone. Angew. Chem. Int. Ed. 44, 2275–2279 (2005)

    Article  CAS  Google Scholar 

  107. C. Zhao, K. Ouyang, J. Zhang, N. Yang, Synthesis and properties of optically active helical polymers from (S)-3-functional-3′-vinyl-BINOL derivatives. RSC Adv. 6, 41103–41107 (2016)

    Article  CAS  Google Scholar 

  108. P.K. Dutta, P. Jain, P. Sen, R. Trivedi, P.K. Sen, J. Dutta, Synthesis and characterization of a novel polyazomethine ether for NLO application. Eur. Poly. J. 39, 1007–1011 (2003)

    Article  CAS  Google Scholar 

  109. O.G. Morales-Saavedra, Non linear optical properties of novel amphiphilic azo-polymers bearing well defined oligo (ethylene glycol) spacers. Rev. Mex. Fis. 56, 449–455 (2010)

    CAS  Google Scholar 

  110. D. Yan, S. Jing, Photoinduced reorientation process and nonlinear optical properties of Ag nanoparticle doped azo polymer films. Chin. Phys. Lett. 27, 024204 (2010)

    Article  Google Scholar 

  111. Z. Li, W. Wu, P. Hu, X. Wu, G. Yu, Y. Liu, C. Ye, Z. Li, J. Qin, Click modification of azo-containing polyurethanes through polymer reaction: convenient, adjustable structure and enhanced nonlinear optical properties. Dyes Pigm. 81, 264–272 (2009)

    Article  CAS  Google Scholar 

  112. M. Siwy, B. Jarzabek, K. Switkowski, B. Pura, E. Schab-Balcerzak, Novel poly(esterimide)s containing a push-pull type azobenzene moiety-synthesis, characterization and optical properties. Poly. J. 40, 813–824 (2008)

    Article  CAS  Google Scholar 

  113. N.K. Viswanathan, D.Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, K.S. Tripathy, Surface relief structures on azo polymer films. J. Mater. Chem. 9, 1941–1955 (1999)

    Article  CAS  Google Scholar 

  114. C.M. Gonzalez-Henriquez, C.A. Terraza, M. Sarabia, Theoretical and experimental vibrational spectroscopic investigation of two R1R2-Diphenylsilyl containing monomers and their optically active derivative polymer. J. Phys. Chem. A 118, 1175–1184 (2014)

    Article  CAS  Google Scholar 

  115. H. Kikuchi, H. Hanawa, Y. Honda, Development of polyamide-imide/silica nanocomposite enameled wire. Electron. Comm. Jpn. 96, 41–48 (2013)

    Article  Google Scholar 

  116. E. Grabiec, M. Kurcok, E. Schab-Balcerzak, Poly(amide imides) and poly(ether imides) containing 1,3,4-oxadiazole or pyridine rings: characterizations and optical properties. J. Phys. Chem. A 113, 1481–1488 (2009)

    Article  CAS  Google Scholar 

  117. S. You, C. Tang, C. Yu, X. Wang, J. Zhang, J. Han, Y. Gan, N. Ren, Forward osmosis with a novel thin-film inorganic membrane. Environ. Sci. Technol. 47, 8733–8742 (2013)

    Article  CAS  Google Scholar 

  118. S. Mallakpour, M. Zarei, Novel, thermally stable and chiral poly(amide-imide)s derived from a new diamine containing pyridine ring and various amino acid-based diacids fabrication and characterization. High Perform. Polym. 25, 245–253 (2013)

    Article  CAS  Google Scholar 

  119. A. Natansohn, P. Rochon, Photoinduced motions in azo-containing polymers. Chem. Rev. 102, 4139–4175 (2002)

    Article  CAS  Google Scholar 

  120. E. Schab-Balcerzak, A. Sobolewska, A. Miniewicz, J. Jurusik, B. Jarzabek, Photoinduced holographic gratings in azobenzene functionalized poly (amideimide)s. Poly. J. 39, 659–669 (2007)

    Article  CAS  Google Scholar 

  121. S. Hernandez-Ainsa, R. Alcala, J. Barbera, M. Marcos, C. Sanchez, J.L. Serrano, Ionic azo-codendrimers: influence of the acids contents in the liquid crystalline properties and the photoinduced optical anisotropy. Europ. Poly. J. 47, 311–318 (2011)

    Article  CAS  Google Scholar 

  122. J. Mysliwiec, M. Czajkowski, A. Miniewicz, S. Bartkiewicz, A. Kochalska, L. Polakova, Z. Sedlakova, S. Nespurek, Dynamics of photoinduced motions in azobenzene grafted polybutadienes. Opt. Mat. 33, 1398–1404 (2011)

    Article  CAS  Google Scholar 

  123. K.G. Yager, C.J. Barrett, All-optical patterning of azo polymer films. Curr. Opin. Solid State Mater. Sci. 5, 487–494 (2001)

    Article  CAS  Google Scholar 

  124. K. Akagi, T. Mori, Helical polyacetylene—origins and synthesis. Chem. Rec. 8, 395–406 (2008)

    Article  CAS  Google Scholar 

  125. H. Lu, J. Mack, T. Nyokong, N. Kobayashi, Z. Shen, Optically active BODIPYs. Coord. Chem. Rev. 318, 1–15 (2016)

    Article  CAS  Google Scholar 

  126. L. M. S. Takata, H. Iida, K. Shimomura, K. Hayashi, A. A. D. Santos, E. Yashima, Helical poly(phenylacetylene) bearing chiral and achiral imidazolidinone-based pendants that catalyze asymmetric reactions due to catalytically active achiral pendants assisted by macromolecular helicity. Macromol. Rapid Commun. 36, 2047–2054 (2015)

    Google Scholar 

  127. S. Kumar, D.K. Tiwari, P.K. Dutta, J. Koh, Preparation and circular dichroism properties of chitosan/methoxycinnamaldehyde. J. Polym. Mater. 29, 309–316 (2012)

    CAS  Google Scholar 

  128. J. Singh, S. Kumar, P.K. Dutta, Preparation and chiroptical properties of chitosan acid derivatives in dilute solution. J. Polym. Mater. 26, 167–176 (2009)

    CAS  Google Scholar 

  129. H. Iida, S. Iwahana, T. Mizoguchi, E. Yashima, Correction to main-chain optically active riboflavin polymer for asymmetric catalysis and its vapochromic behavior. J. Am. Chem. Soc. 134, 15103–15113 (2012)

    Article  CAS  Google Scholar 

  130. D.Y. Wu, T.L. Zhang, Recent developments in linear chain clusters of low-valent platinum group metals. Prog. Chem. 16, 911–917 (2004)

    CAS  Google Scholar 

  131. C. Bariain, I.R. Matias, C. Fdez-Valdivielso, C. Elosua, A. Luquin, J. Garrido, M. Laguna, Optical fibre sensors based on vapochromic gold complexes for environmental applications. Sens. Actuator B 108, 535–541 (2005)

    Article  CAS  Google Scholar 

  132. J.K. Bera, K.R. Dunbar, Chain compounds based on transition metal backbones: new life for an old topic. Angew. Chem. Int. Ed. 41, 4453–4457 (2002)

    Article  CAS  Google Scholar 

  133. S.C. Terrones, C.E. Aguado, C. Bariain, A.S. Carretero, I.R. Matias Maestro, A.F. Gutierrez, A. Luquin, J. Garrido, M. Laguna, Volatile-organic-compound optic fiber sensor using a gold-silver vapochromic complex. Opt. Eng. 45, 040101–040107 (2006)

    Article  Google Scholar 

  134. P. Rattanatraicharoen, K. Shintaku, K. Yamabuki, T. Oishi, K. Onimura, Synthesis and chiroptical properties of helical poly(phenylacetylene) bearing optically active chiral oxazoline pendants. Polymer 53, 2567–2573 (2012)

    Article  CAS  Google Scholar 

  135. M. Antonietti, K. Landfester, Polyreactions in miniemulsions. Prog. Poly. Sci. 27, 689–757 (2002)

    Article  CAS  Google Scholar 

  136. L. Ding, C. Chen, J. Deng, W. Yang, Optically active thermosensitive amphiphilic polymer brushes based on helical polyacetylene: preparation through ‘‘click’’ onto grafting method and self-assembly. Polym. Bull. 69, 1023–1040 (2012)

    Article  CAS  Google Scholar 

  137. T. Aoki, M. Muramatsu, T. Torii, K. Sanui, N. Ogata, Thermosensitive phase transition of an optically active polymer in aqueous milieu. Macromolecules 34, 3118–3119 (2001)

    Article  CAS  Google Scholar 

  138. G. Decher, J.B. Schlenoff (eds.), Multilayer thin films–sequential assembly of nanocomposite materials (Wiley-VCH, Weinheim, 2003)

    Google Scholar 

  139. J.H. Dai, A.M. Balachandra, J.I. Lee, M.L. Bruening, Controlling ion transport through multilayer polyelectrolyte membranes by derivatization with photolabile functional groups. Macromolecules 35, 3164–3170 (2002)

    Article  CAS  Google Scholar 

  140. H.H. Rmaile, J.B. Schlenoff, Optically active polyelectrolyte multilayers as membranes for chiral separations. J. Am. Chem. Soc. 125, 6602–6603 (2003)

    Article  CAS  Google Scholar 

  141. B. Zdyrko, M.K. Kinnan, G. Chumanov, I. Luzinov, Fabrication of optically active flexible polymer films with embedded chain-like arrays of silver nanoparticles. Chem. Commun. 1284–1286 (2008)

    Google Scholar 

  142. R. Yang, Y. He, Optically and non-optically excited thermography for composites: a review. Infr. Phy. Tech. 75, 26–50 (2016)

    Article  CAS  Google Scholar 

  143. B. Notario, J. Pinto, M.A. Rodriguez-Perez, Nanoporous polymeric materials: a new class of materials with enhanced properties. Prog. Mat. Sci. 78, 93–139 (2016)

    Article  CAS  Google Scholar 

  144. C.R. Mendonca, D.S. Correa, F. Marlow, T. Voss, P. Tayalia, E. Mazur, Three-dimensional fabrication of optically active microstructures containing an electroluminescent polymer. Appl. Phy. Lett. 95, 113309–113313 (2009)

    Article  CAS  Google Scholar 

  145. L. Angiolini, T. Benelli, L. Giorgini, E. Salatelli, R. Bozio, A. Dauru, D. Pedron, Synthesis, chiroptical properties and photoinduced linear birefringence of the homopolymer of (R)-3-methacryloyloxy-1-(4’-cyano-4-azobenzene)pyrrolidine and of the copolymers with the enantiomeric monomer. Europ. Poly. J. 41, 2045–2054 (2005)

    Article  CAS  Google Scholar 

  146. J. Gasiorowski,S. Boudiba, K. Hinger, C. Ulbricht, V. Fattori, F. Tinti, N. Camaioni, R. Menon, S. Schlager, L. Boudida, N.S. Sariciftci, D.A.M. Egbe, Anthracene containing conjugated polymer showing four optical transitions upon doping: a apectroscopic study. J. Poly. Sci. B Poly. Phy. 52, 338–346 (2014)

    Google Scholar 

  147. A.J. Heeger, N.S. Sariciftci, E.B. Namdas, Semiconducting and Metallic Polymers. (Oxford University Press, Oxford, 2010) 978–0-19-852864-7

    Google Scholar 

  148. Y.J. Cheng, S.H. Yang, C.S. Hsu, Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 109, 5868–5923 (2009)

    Article  CAS  Google Scholar 

  149. D.A.M. Egbe, H. Tillmann, E. Birckner, E. Klemm, Synthesis and properties of novel well-defined alternating PPE/PPV copolymers. Macromol. Chem. Phys. 202, 2712–2726 (2001)

    Article  CAS  Google Scholar 

  150. A.P. Vajpeyi, S. Tripathy, S.J. Chua, E.A. Fitzgerald, Investigation of optical properties of nanoporous GaN films. Physica E 28, 141–149 (2005)

    Article  CAS  Google Scholar 

  151. N. Maity, A. Mandal, A.K. Nandi, Synergistic interfacial effect of polymer stabilized graphene via noncovalent functionalization in poly(vinylidene fluoride) matrix yielding superior mechanical and electronic properties. Polymer 88, 79–93 (2016)

    Article  CAS  Google Scholar 

  152. C. Ren, Y. Chen, H. Zhang, J. Deng, Noncovalent chiral functionalization of graphene with optically active helical polymers. Macromol. Rapid Commun. 34(17), 1368–1374 (2013)

    Article  CAS  Google Scholar 

  153. A.C. Lopes, C.M. Costa, C.J. Tavares, I.C. Neves, S.L. Mendez, Nucleation of the electroactive g phase and enhancement of the optical transparency in low filler content poly(vinylidene)/clay nanocomposites. J. Phys. Chem. C 115, 18076–18082 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradip K. Dutta .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Dutta, P.K., Kumar, V. (2017). Optically Active Polymers: A Systematic Study on Syntheses and Properties. In: Optically Active Polymers. SpringerBriefs in Molecular Science. Springer, Singapore. https://doi.org/10.1007/978-981-10-2606-5_1

Download citation

Publish with us

Policies and ethics