Skip to main content

Beauveria bassiana as Biocontrol Agent: Formulation and Commercialization for Pest Management

  • Chapter
  • First Online:
Agriculturally Important Microorganisms

Abstract

Beauveria bassiana is the most widely used biocontrol agent against many major arthropod pests. This ascomycetal fungus is able to produce infection structures and synthesize a cocktail of proteins, enzymes, organic acids, and bioactive secondary metabolites, which are responsible for the entomopathogenic activity and virulence. For commercial purposes, B. bassiana is usually formulated using conidia with different stabilizing agents. Various types of formulation include bait/solid, encapsulation, and emulsion. Commercialization and marketing strategies, including alternative marketing channels, such as earthworm compost and compost, along with the legal framework are addressed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alurappa R, Bojegowda MR, Kumar V, Mallesh NK, Chowdappa S (2014) Characterisation and bioactivity of oosporein produced by endophytic fungus Cochliobolus kusanoi isolated from Nerium oleander L. Nat Prod Res 28:2217–2220

    Article  CAS  PubMed  Google Scholar 

  • Anastasi A, Varese GC, Voyron S, Scannerini S (2004) Characterization of fungal biodiversity in compost and vermicompost. Compost Sci Util 12:185

    Article  Google Scholar 

  • Arancon NQ, Edwards CA, Lee SS, Yardim F (2002) Management of plant parasitic nematodes by use of vermicomposts. Proc Brighton Crop Protect Conf Pests Dis 2:705–710

    Google Scholar 

  • Arancon NQ, Edwards CA, Yardim EN, Oliver TJ, Byrne RJ, Keeney G (2007) Suppression of two-spotted spider mite (Tetranychus urticae), mealy bug (Pseudococcus sp) and aphid (Myzus persicae) populations and damage by vermicomposts. Crop Protec 26:29–39

    Article  Google Scholar 

  • Bidochka MJ, Khachatourians GG (1991) The implication of metabolic acids produced by Beauveria bassiana in pathogenesis of the migratory grasshopper, Melanoplus sanguinipes. J Invertebr Pathol 58:106–117

    Article  CAS  Google Scholar 

  • Brewer D, Jen WC, Jones GA, Taylor A (1984) The antibacterial activity of some naturally occurring 2, 5-dihydroxy-1, 4-benzoquinones. Can J Microbiol 30:1068–1072

    Article  CAS  PubMed  Google Scholar 

  • Brown TP, Fletcher OJ, Osuna O, Wyatt RD (1987) Microscopic and ultrastructural renal pathology of oosporein-induced toxicosis in broiler chicks. Avian Dis 31:868–877

    Article  CAS  PubMed  Google Scholar 

  • Bukhari T, Takken W, Koenraadt CJ (2011) Development of Metarhizium anisopliae and Beauveria bassiana formulations for control of malaria mosquito larvae. Parasit Vector 4:23

    Article  Google Scholar 

  • Calo L, Fornelli F, Ramires R, Nenna S, Tursi A, Caiaffa MF et al (2004) Cytotoxic effects of the mycotoxin beauvericin to human cell lines of myeloid origin. Pharmacol Res 49:73–77

    Article  CAS  PubMed  Google Scholar 

  • Champlin FR, Grula EA (1979) Non involvement of beauvericin in the entomopathogenicity of Beauveria bassiana. Appl Environ Microbiol 37:1122–1126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Charnley AK (2003) Fungal pathogens of insects: cuticle-degrading enzymes and toxins. Adv Bot Res 40:241–321

    Article  CAS  Google Scholar 

  • Cho EM, Kirkland BH, Holder DJ, Keyhani NO (2007) Phage display cDNA cloning and expression analysis of hydrophobins from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiology 153:3438–3447

    Article  CAS  PubMed  Google Scholar 

  • Cole RJ, Kirksey JW, Cutler HG, Davis EE (1974) Toxic effects of oosporein from Chaetomium trilaterale. J Agr Food Chem 22:517–520

    Article  CAS  Google Scholar 

  • Covarelli L, Beccari G, Prodi A, Generotti S, Etruschi F, Meca G et al (2015) Biosynthesis of beauvericin and enniatins in vitro by wheat Fusarium species and natural grain contamination in an area of central Italy. Food Microbiol 46:618–626

    Article  CAS  PubMed  Google Scholar 

  • el-Basyouni SH, Vining LC (1966) Biosynthesis of oosporein in Beauveria bassiana (Bals.) Vuill. Can J Biochem 44:557–565

    Article  CAS  PubMed  Google Scholar 

  • Eley KL, Halo LM, Song Z, Powles H, Cox RJ, Bailey AM et al (2007) Biosynthesis of the 2-pyridone tenellin in the insect pathogenic fungus Beauveria bassiana. Chembiochem 8:289–297

    Article  CAS  PubMed  Google Scholar 

  • Elsworth JF, Grove JF (1977) Cyclodepsipeptides from Beauveria bassiana Bals. Part 1. Beauverolides H and I. J Chem Soc. Perkin 1(3):270–273

    Article  Google Scholar 

  • Fan YH, Fang WG, Guo SJ, Pei XQ, Zhang YJ, Xiao YH et al (2007) Increased insect virulence in Beauveria bassiana strains overexpressing an engineered chitinase. Appl Environ Microbiol 73:295–302

    Article  CAS  PubMed  Google Scholar 

  • Fang WG, Feng J, Fan YH, Zhang YJ, Bidochka MJ, Leger RJS et al (2009) Expressing a fusion protein with protease and chitinase activities increases the virulence of the insect pathogen Beauveria bassiana. J Invertebr Pathol 102:155–159

    Article  CAS  PubMed  Google Scholar 

  • Faria MR, Wraight SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256

    Article  CAS  Google Scholar 

  • Feng P, Shang Y, Cen K, Wang C (2015) Fungal biosynthesis of the bibenzoquinone oosporein to evade insect immunity. Proc Natl Acad Sci U S A 112:11365–11370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda T, Arai M, Yamaguchi Y, Masuma R (2004a) New beauvericins, potentiators of antifungal miconazole activity, produced by Beauveria sp. FKI-1366. I. Taxonomy, fermentation, isolation and biological properties. J Antibiot (Tokyo) 57:110–116

    Article  CAS  Google Scholar 

  • Fukuda K, Arai M, Yamaguchi Y, Masuma R, Tomoda H, Omura S (2004b) New beauvericins, potentiators of antifungal miconazole activity produced by Beauveria sp FKI-1366 Structure elucidation. J Antibiot (Tokio) 57:117–124

    Article  CAS  Google Scholar 

  • Goettel MS, Eilenberg J, Glare T (2010) Entomopathogenic fungi and their role in regulation of insect populations. In: Gilbert LI, Gill SS (eds) Insect control: biological and synthetic agents. Academic, Amsterdam, pp 387–432

    Google Scholar 

  • Gomes SA, Paula A, Ribeiro A, Moraes C, Santos J, Silva CP et al (2015) Neem oil increases the efficiency of the entomopathogenic fungus Metarhizium anisopliae for the control of Aedes aegypti (Diptera: Culicidae) larvae. Parasit Vectors 8:669

    Article  PubMed  PubMed Central  Google Scholar 

  • Hajjar MJ, Ajlan AM, Al-ahmad MH (2015) New approach of Beauveria bassiana to control the red palm weevil (Coleoptera: Curculionidae) by trapping technique. J Econ Entomol 108:425–432

    Article  CAS  PubMed  Google Scholar 

  • Halo LM, Heneghan MN, Yakasai AA, Song Z, Williams K, Bailey AM et al (2008) Late stage oxidations during the biosynthesis of the 2-pyridone tenellin in the entomopathogenic fungus Beauveria bassiana. J Am Chem Soc 130:17988–17996

    Article  CAS  PubMed  Google Scholar 

  • Hamill RL, Higgens GE, Boaz HE, Gorman M (1969) The structure of beauvericin, a new depsipeptide antibiotic toxic to Artemia salina. Tetrahedron Lett 49:4255–4258

    Article  CAS  Google Scholar 

  • He G, Yan J, Wu XY, Gou XJ, Li WC (2012) Oosporein from Tremella fuciformis. Acta Crystallogr Sect E: Struct Rep Online 68:o1231

    Article  CAS  Google Scholar 

  • Huang B, Li CR, Li ZG, Fan MZ, Li ZZ (2002) Molecular Identification of the Teleomorph of Beauveria bassiana. Mycotaxon 81:229–236

    Google Scholar 

  • Jeffs LB, Khachatourians GG (1997) Toxic properties of Beauveria pigments on erythrocyte membranes. Toxicon 35:1351–1356

    Article  CAS  PubMed  Google Scholar 

  • Jegorov A et al. (1990) Are the depsipepeptides of Beauveria brongniartii involved in the entomopathogenic process? In: Jegorov A, Matha V (eds) Proceeding of international conference on biopesticides, theory and practice, pp 71–81

    Google Scholar 

  • Jegorov A, Sedmera P, Matha V, Simek P, Zahradnícková H, Landa Z et al (1994) Beauverolides L and La from Beauveria tenella and Paecilomyces fumosoroseus. Phytochemistry 37:1301–1303

    Article  CAS  PubMed  Google Scholar 

  • Jirakkakul J, Punya J, Pongpattanakitshote S, Paungmoung P, Vorapreeda N, Tachaleat A et al (2008) Identification of the nonribosomal peptide synthetase gene responsible for bassianolide synthesis in wood-decaying fungus Xylaria sp. BCC1067. Microbiology 154:995–1006

    Article  CAS  PubMed  Google Scholar 

  • Jirakkakul J, Cheevadhanarak S, Punya J, Chutrakul C, Senachak J, Buajarern T et al (2015) Tenellin acts as an iron chelator to prevent iron-generated reactive oxygen species toxicity in the entomopathogenic fungus Beauveria bassiana. FEMS Microbiol Lett 362:1–8

    Article  PubMed  Google Scholar 

  • Jow G, Chou C, Chen B, Tsai J (2004) Beauvericin induces cytotoxic effects in human acute lymphoblastic leukemia cells through cytochrome c release, caspase 3 activation: the causative role of calcium. Cancer Lett 216:165–173

    Article  CAS  PubMed  Google Scholar 

  • Keswani C, Singh SP, Singh HB (2013) Beauveria bassiana: status, mode of action, applications and safety issues. Biotech Today 3:16–20

    Article  Google Scholar 

  • Kirkland BH, Eisa A, Keyhani NO (2005) Oxalic acid as a fungal acaracidal virulence factor. J Med Entomol 42:346–351

    Article  CAS  PubMed  Google Scholar 

  • Kouti K, Lemmens M, Lemmens-Gruber R (2003) Beauvericin induced channels in ventricular myocytes and liposomes. Biochim Biophys Acta 1609:203–210

    Article  CAS  Google Scholar 

  • Kwon HC, Bang EJ, Choi SU, Lee WC, Cho SY, Jung IY et al (2000) Cytotoxic cyclodepsipeptides of Bombycis corpus 101A. Yakhak Hoechi 44:115–118

    CAS  Google Scholar 

  • Lewis MW, Robalino IV, Keyhani NO (2009) Uptake of the fluorescent probe FM4-64 by hyphae and haemolymph-derived in vivo hyphal bodies of the entomopathogenic fungus Beauveria bassiana. Microbiology 155:3110–3120

    Article  CAS  PubMed  Google Scholar 

  • Li ZZ, Li CR, Huang B, Fan MZ (2001) Discovery and demonstration of the teleomorph of Beauveria bassiana (Bals.) Vuill., an important entomogenous fungus. Chinese Sci Bull 46:751–753

    Article  Google Scholar 

  • Lin H, Lee Y, Chen B, Tsai M, Lu J, Chou C et al (2005) Involvement of Bc1-2 family, cytochrome c and caspase 3 in induction of apoptosis by beauvericin in human non-small cell lung cancer cells. Cancer Lett 230:248–259

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Zhao X, Guo M, Liu H, Zheng Z (2015) Growth and metabolism of Beauveria bassiana spores and mycelia. BMC Microbiol 15:267

    Article  PubMed  PubMed Central  Google Scholar 

  • Manning RO, Wyatt RD (1984) Comparative toxicity of Chaetomium contaminated corn and various chemical forms of oosporein in broiler chicks. Poultry Sci 63:251–259

    Article  CAS  Google Scholar 

  • Mao BZ, Huang C, Yang GM, Chen YZ, Chen SY (2010) Separation and determination of the bioactivity of oosporein from Chaetomium cupreum. Afr J Biotechnol 9:5955–5961

    CAS  Google Scholar 

  • McInnes AG, Smith DG, Wat CK, Vining LC, Wright JLC (1974) Tenellin and bassianin, metabolites of Beauveria species. Structure elucidation with 15N- and doubly 13C-enriched compounds using 13C nuclear magnetic resonance spectroscopy. J Chem Soc Chem Commun 1974:281–282

    Article  Google Scholar 

  • Ment D, Gindin G, Rot A, Soroker V, Glazer I, Barel S et al (2010) Novel technique for quantifying adhesion of Metarhizium anisopliae conidia to the tick cuticle. Appl Environ Microbiol 76:3521–3528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra S, Kumar P, Malik A (2013) Preparation, characterization, and insecticidal activity evaluation of three different formulations of Beauveria bassiana against Musca domestica. Parasitol Res 112:3485–3495

    Article  PubMed  Google Scholar 

  • Mochizuki K, Ohmori K, Tamura H, Shizuri Y, Nishiyama S, Mioshi E et al (1993) The structures of bioactive cyclodepsipeptides, beauveriolide-I and beauveriolide-II, metabolites of entomopathogenic fungi Beauveria sp. Bull Chem Soc Jpn 66:3041–3046

    Article  CAS  Google Scholar 

  • Molnar I, Gibson DM, Krasnoff SB (2010) Secondary metabolites from entomopathogenic Hypocrealean fungi. Nat Prod Rep 27:1241–1275

    Article  CAS  PubMed  Google Scholar 

  • Nakajyo S, Shimizu K, Kometani A, Suzuki A, Ozaki H, Urakawa N (1983) On the inhibitory mechanism of bassianolide, a cyclodepsipeptide, in acetylcholine-induced contraction in guinea-pig taenia coli. Jpn J Pharmacol 33:573–582

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Urquiza A, Riveiro-Miranda L, Santiago-Álvarez C, Quesada-Moraga E (2010) Insect-toxic secreted proteins and virulence of the entomopathogenic fungus Beauveria bassiana. J Invertebr Pathol 105:270–278

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Urquiza A, Keyhani NO (2013) Action on the Surface: Entomopathogenic Fungi versus the Insect Cuticle. Insects 4:357–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Urquiza A, Luo Z, Keyhani NO (2015) Improving mycoinsecticides for insect biological control. App Microbiol Biotechnol 99:1057–1068

    Article  CAS  Google Scholar 

  • Parker BL, Skinner M, Gouli S, Gouli V, Kim JS (2015) Virulence of BotaniGard® to second instar brown marmorated stink bug, Halyomorpha halys (Stål) (Heteroptera: Pentatomidae). Insects 6:319–324

    Article  PubMed  PubMed Central  Google Scholar 

  • Pedrini N, Juárez M, Crespo R, de Alaniz M (2006) Clues on the role of Beauveria bassiana catalases in alkane degradation events. Mycologia 98:528–534

    Article  CAS  PubMed  Google Scholar 

  • Pedrini N, Zhang S, Juarez MP, Keyhani NO (2010) Molecular characterization and expression analysis of a suite of cytochrome P450 enzymes implicated in insect hydrocarbon degradation in the entomopathogenic fungus Beauveria bassiana. Microbiology 156:2549–2557

    Article  CAS  PubMed  Google Scholar 

  • Pedrini N, Ortiz-Urquiza A, Huarte-Bonnet C, Zhang S, Keyhani NO (2013) Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: Hydrocarbon oxidation within the context of a host-pathogen interaction. Front Microbiol 4:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Pegram RA, Wyatt RD (1981) Avian gout caused by oosporein, a mycotoxin produced by Caetomium trilaterale. Poult Sci 60:2429–2440

    Article  CAS  PubMed  Google Scholar 

  • Quesada-Moraga E, Vey A (2004) Bassiacridin, a protein toxic for locusts secreted by the entomopathogenic fungus Beauveria bassiana. Mycol Res 108:441–452

    Article  CAS  PubMed  Google Scholar 

  • Ramesha A, Venkataramana M, Nirmaladevi D, Gupta VK, Chandranayaka S, Srinivas C (2015) Cytotoxic effects of oosporein isolated from endophytic fungus Cochliobolus kusanoi. Front Microbiol 6:870

    Article  PubMed  PubMed Central  Google Scholar 

  • Rehner SA (2005) Phylogenetics of the insect pathogenic genus Beauveria. In: Vega FE, Blackwell M (eds) Insect-fungal associations: ecology and evolution. Oxford University Press, New York, pp 3–27

    Google Scholar 

  • Rehner SA, Minnis AM, Sung GH, Luangsa-ard JJ, Devotto L, Humber RA (2011) Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria. Mycologia 103:1055–1073

    Article  PubMed  Google Scholar 

  • Ritu A, Anjali C, Nidhi T, Sheetal P, Deepak B (2012) Biopesticidal formulation of Beauveria Bassiana effective against larvae of Helicoverpa armigera. Biofertil Biopestici 3:3

    Google Scholar 

  • Roberts DW (1981) Toxins of entomopathogenic fungi. In: Burges HD (ed) Microbial control of pests and plant diseases 1970–1980. Academic, New York/London, pp 441–464

    Google Scholar 

  • Sankar-Ummidi VR, Vadlamani P (2014) Preparation and use of oil formulations of Beauveria bassiana and Metarhizium anisopliae against Spodoptera litura larvae. Afr J Microbiol Res 8:1638–1644

    Article  Google Scholar 

  • Shin CG, An DG, Song HH, Lee C (2009) Beauvericin and enniatins H, I and MK1688 are new potent inhibitors of human immunodeficiency virus type-1 integrase. J Antibiot (Tokyo) 62:687–690

    Article  CAS  Google Scholar 

  • Singh HB, Keswani C, Ray S, Yadav SK, Singh SP, Singh S, Sarma BK (2014) Beauveria bassiana: biocontrol beyond lepidopteran pests. In: Sree KS, Varma A (eds) Biocontrol of Lepidopteran pests: use of soil microbes and their metabolites. Springer-Switzerland, pp 219–235

    Google Scholar 

  • St Leger RJ, Cooper RM, Charnley AK (1986) Cuticle degrading enzymes of entomopathogenic fungi: cuticle degradation in vitro by enzymes from entomopathogens. J Invertebr Pathol 47:167–177

    Article  CAS  Google Scholar 

  • St Leger RJ, Joshi L, Roberts DW (1997) Adaptation of proteases and carbohydrates of saprophytic, phytopathogenic and entomopathogenic fungi to the requirements of their ecological niches. Microbiology 143:1983–1992

    Article  CAS  PubMed  Google Scholar 

  • Strasser H, Abendstein D (2000) Oosporein, a fungal secondary metabolite with antimicrobial properties. IOBC/WPRS Bullet 23:113–115

    Google Scholar 

  • Strasser H, Abendstein D, Stuppner H, Butt TM (2000a) Monitoring the distribution of secondary metabolites produced by the entomogenous fungus Beauveria brongniartii with particular reference to oosporein. Mycol Res 104:1227–1233

    Article  CAS  Google Scholar 

  • Strasser H, Vey A, Butt TM (2000b) Are There Any Risks in Using Entomopathogenic Fungi for Pest Control, with Particular Reference to the Bioactive Metabolites of Metarhizium, Tolypocladium and Beauveria species? Biocontr Sci Technol 10:717–735

    Article  Google Scholar 

  • Sung JM, Lee JO, Humber RA, Sung GH, Shrestha B (2006) Cordyceps bassiana and Production of Stromata in vitro Showing Beauveria Anamorph in Korea. Mycobiology 34:1–6

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki A, Kanaoka M, IsogaiA MS, Ichinoe M, Tamura S (1977) Bassianolide, a new insecticidal cyclodepsipeptide from Beauveria bassiana and Verticillium lecanii. Tetrahedron Lett 25:2167–2170

    Article  Google Scholar 

  • Toledo AV, de Remes Lenicov AMM, Lastra CCL (2010) Histopathology caused by the entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae, in the adult planthopper, Peregrinus maidis, a maize virus vector. J Insect Sci 10:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toshinori N, Kengo N, Kenji K, Tadao A (2004) Antifungal Activity of Oosporein from an Antagonistic Fungus against Phytophthora infestans. Z Naturforsch 59:302–304

    Google Scholar 

  • Vega FE, Posada F, Aime MC, Pava-Ripoli M, Infante F, Rehner SA (2008) Entomopathogenic fungal endophytes. Biol Control 46:72–82

    Article  Google Scholar 

  • Vey A, Hoagland R, Butt TM (2001) Toxic metabolites of fungal biocontrol agents. In: Butt TM, Jackson CW, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CAB International, Wallingford, pp 311–346

    Chapter  Google Scholar 

  • Vilcinskas A, Jegorov A, Landa Z, Götz P, Matha V (1999) Effects of beauverolide L and cyclosporin A on humoral and cellular immune response of the greater wax moth, Galleria mellonella. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 122:83–92

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Xu L (2012) Beauvericin, a bioactive compound produced by fungi: a short review. Molecules 17:2367–2377

    Article  CAS  PubMed  Google Scholar 

  • Wätjen W, Debbab A, Hohlfeld A, Chovolou Y, Proksch P (2014) The mycotoxin beauvericin induces apoptotic cell death in H4IIE hepatoma cells accompanied by an inhibition of NF-kB-activity and modulation of MAP-kinases. Toxicol Lett 231:9–16

    Article  CAS  PubMed  Google Scholar 

  • Wu SN, Chen H, Liu YC, Chiang HT (2002) Block of L-type Ca2+ current by beauvericin, a toxic cyclopeptide, in the NG108-15 neuronal cell line. Chem Res Toxicol 15:854–860

    Article  CAS  PubMed  Google Scholar 

  • Xiao G, Ying SH, Zheng P, Wang ZL, Zhang S, Xie XQ et al (2012) Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep 2:483

    PubMed  PubMed Central  Google Scholar 

  • Xu Y, Orozco R, Wijeratne EM, Gunatilaka AA, Stock SP, Molnár I (2008) Biosynthesis of the cyclooligomer depsipeptide beauvericin, a virulence factor of the entomopathogenic fungus Beauveria bassiana. Chem Biol 15:898–907

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Orozco R, Kithsiri Wijeratne EM, Espinosa-Artiles P, Leslie Gunatilaka AA, Patricia Stock S et al (2009) Biosynthesis of the cyclooligomer depsipeptide bassianolide, an insecticidal virulence factor of Beauveria bassiana. Fungal Genet Biol 46:353–364

    Article  CAS  PubMed  Google Scholar 

  • Yacoub A, Batta YA (2016) Invert emulsion: Method of preparation and application as proper formulation of entomopathogenic fungi. MethodsX 3:119–127

    Article  Google Scholar 

  • Zhang L, Yan K, Zhang Y, Huang R, Bian J, Zheng C et al (2007) High-throughput synergy screening identifies microbial metabolites as combination agents for the treatment of fungal infections. Proc Natl Acad Sci U S A 104:4606–4611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YJ, Feng MG, Fan YH, Luo ZB, Yang XY, Wu D et al (2008) A cuticle-degrading protease (CDEP-1) of Beauveria bassiana enhances virulence. Biocontr Sci Technol 18:551–563

    Article  Google Scholar 

  • Zhang SZ, Xia YX, Kim B, Keyhani NO (2011) Two hydrophobins are involved in fungal spore coat rodlet layer assembly and each play distinct roles in surface interactions, development and pathogenesis in the entomopathogenic fungus, Beauveria bassiana. Mol Microbiol 80:811–826

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos García-Estrada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

García-Estrada, C., Cat, E., Santamarta, I. (2016). Beauveria bassiana as Biocontrol Agent: Formulation and Commercialization for Pest Management. In: Singh, H., Sarma, B., Keswani, C. (eds) Agriculturally Important Microorganisms. Springer, Singapore. https://doi.org/10.1007/978-981-10-2576-1_5

Download citation

Publish with us

Policies and ethics