Skip to main content

Robust Interval Economic Dispatch and the Price of Robustness

  • Chapter
  • First Online:
  • 826 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Interval economic dispatch only gives an interval solution, which cannot be used for the practical dispatch schedule, but only be used for evaluating the impact of wind power uncertainties. To find an optimal dispatch schedule from the interval solution while providing a “robust” solution for power system operators, interval robust optimization is proposed, including adaptive interval robust optimization and two-stage interval optimization models. The optimal solution from interval robust optimization is sacrificed by guaranteeing the whole security within the uncertainty set, which may lead to the conservatism comparing to the traditional deterministic economic dispatch. To reduce the conservatism, the price of robustness is introduced for decision makers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jabr RA (2013) Adjustable robust OPF with renewable energy sources. Power Syst IEEE Trans 28(4):4742–4751

    Article  Google Scholar 

  2. Cicerone S, D’Angelo G, Di Stefano G et al (2009) Recoverable robustness for train shunting problems. Algorithmic Oper Res 4(2):102–116

    MathSciNet  MATH  Google Scholar 

  3. Bertsimas D, Sim M (2004) The price of robustness. Oper Res 52(1):35–53

    Article  MathSciNet  MATH  Google Scholar 

  4. Changhyeok L, Cong L, Mehrotra S et al (2014) Modeling transmission line constraints in two-stage robust unit commitment problem. Power Syst IEEE Trans 29(3):1221–1231

    Google Scholar 

  5. Martinez-Mares A, Fuerte-Esquivel CR (2013) A robust optimization approach for the interdependency analysis of integrated energy systems considering wind power uncertainty. Power Syst IEEE Trans 28(4):3964–3976

    Article  Google Scholar 

  6. Ahuja RK, Hring RHM, Zaroliagis CD (2009) Robust and online large-scale optimization. Springer, Berlin

    Google Scholar 

  7. Zhai QZ, Guan XH, Cheng JH et al (2010) Fast identification of inactive security constraints in SCUC problems. Power Syst IEEE Trans 25(4):1946–1954

    Article  Google Scholar 

  8. Zimmerman RD, Murillo-Sa X, Nchez CE et al (2011) MATPOWER: steady-state operations, planning, and analysis tools for power systems research and education. Power Syst IEEE Trans 26(1):12–19

    Article  Google Scholar 

  9. Khanabadi M, Ghasemi H, Doostizadeh M (2013) Optimal transmission switching considering voltage security and N-1 contingency analysis. Power Syst IEEE Trans 28(1):542–550

    Article  Google Scholar 

  10. Villumsen JC, Bronmo G, Philpott AB (2013) Line capacity expansion and transmission switching in power systems with large-scale wind power. Power Syst IEEE Trans 28(2):731–739

    Article  Google Scholar 

  11. Makela O, Warrington J, Morari M et al (2014) Optimal transmission line switching for large-scale power systems using the alternating direction method of multipliers. In: Power systems computation conference (PSCC), Wroclaw

    Google Scholar 

  12. Soroush M, Fuller JD (2014) Accuracies of optimal transmission switching heuristics based on DCOPF and ACOPF. Power Syst IEEE Trans 29(2):924–932

    Article  Google Scholar 

  13. Ostrowski J, Wang JH, Liu C (2014) Transmission switching with connectivity-ensuring constraints. Power Syst IEEE Trans 29(6):2621–2627

    Article  Google Scholar 

  14. Orero SO, Irving MR (1996) Economic dispatch of generators with prohibited operating zones: a genetic algorithm approach. Gener Transm Distrib IEE Proc 143(6):529–534

    Article  Google Scholar 

  15. Jayabarathi T, Sadasivam G, Ramachandran V (1999) Evolutionary programming based economic dispatch of generators with prohibited operating zones. Electr Power Syst Res 52(3):261–266

    Article  Google Scholar 

  16. Zwe-Lee G (2003) Particle swarm optimization to solving the economic dispatch considering the generator constraints. Power Syst IEEE Trans 18(3):1187–1195

    Article  Google Scholar 

  17. Naresh R, Dubey J, Sharma J (2004) Two-phase neural network based modelling framework of constrained economic load dispatch. IEE Proc Gener Transm Distrib 151(3):373–378

    Article  Google Scholar 

  18. Pereira-Neto A, Unsihuay C, Saavedra OR (2005) Efficient evolutionary strategy optimisation procedure to solve the nonconvex economic dispatch problem with generator constraints. Gener Transm Distrib IEE Proc 152(5):653–660

    Article  Google Scholar 

  19. Jeyakumar DN, Jayabarathi T, Raghunathan T (2006) Particle swarm optimization for various types of economic dispatch problems. Int J Electr Power Energy Syst 28(1):36–42

    Article  Google Scholar 

  20. Cai J, Ma X, Li L et al (2007) Chaotic particle swarm optimization for economic dispatch considering the generator constraints. Energy Convers Manag 48(2):645–653

    Article  Google Scholar 

  21. Panigrahi BK, Yadav SR, Agrawal S et al (2007) A clonal algorithm to solve economic load dispatch. Electr Power Syst Res 77(10):1381–1389

    Article  Google Scholar 

  22. Coelho LDS, Lee C (2008) Solving economic load dispatch problems in power systems using chaotic and Gaussian particle swarm optimization approaches. Int J Electr Power Energy Syst 30(5):297–307

    Article  Google Scholar 

  23. Selvakumar AI, Thanushkodi K (2008) Anti-predatory particle swarm optimization: solution to nonconvex economic dispatch problems. Electr Power Syst Res 78(1):2–10

    Article  Google Scholar 

  24. Pothiya S, Ngamroo I, Kongprawechnon W (2008) Application of multiple tabu search algorithm to solve dynamic economic dispatch considering generator constraints. Energy Convers Manag 49(4):506–516

    Article  Google Scholar 

  25. Chandram K, Subrahmanyam N, Sydulu M (2009) Secant method combined with PSO for economic dispatch with prohibited operating zones. In: IEEE/PES power systems conference and exposition, Seattle, WA

    Google Scholar 

  26. Khamsawang S, Jiriwibhakorn S (2009) Solving the economic dispatch problem using novel particle swarm optimization. Int J Electr Comput Syst Eng 3(1):41–46

    Google Scholar 

  27. Ding T, Bo R, Gu W et al (2014) Big-M based MIQP method for economic dispatch with disjoint prohibited zones. Power Syst IEEE Trans 29(2):976–977

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Ding .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Ding, T. (2017). Robust Interval Economic Dispatch and the Price of Robustness. In: Power System Operation with Large Scale Stochastic Wind Power Integration. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-2561-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2561-7_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2560-0

  • Online ISBN: 978-981-10-2561-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics