Skip to main content

Fluorescent Pseudomonas: A Natural Resource from Soil to Enhance Crop Growth and Health

  • Chapter
  • First Online:
Microbial Models: From Environmental to Industrial Sustainability

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 1))

Abstract

Fluorescent Pseudomonas had always played an important role in the development of biopesticides and biofertilizers since the concern for more sustainable agricultural production systems exists. They produce a distinctive soluble yellowish-green siderophore called pyoverdin, show an excellent root-colonizing ability, and exert a wide battery of mechanisms to promote plant growth, either directly by facilitating nutrient acquisition or synthesizing phytohormones or indirectly by biological control of plant pathogens. Fluorescent Pseudomonas have been applied successfully to control plant pathogens on different pathosystems due to their ability of producing secondary metabolites such as antibiotics, induction of systemic resistance in the host plant, and/or competition for niches and nutrients. They are very suitable for developing market inoculants, as they are abundant in soil and roots, can use a variety of carbon sources, have a high growth rate, can be introduced into the rhizosphere by seed bacterization, and are amenable to genetic manipulation. However, compared to the volume of research that has been performed with these bacteria, few strains have been successfully developed into commercial products for plant biocontrol and biostimulation. Some drawbacks for their field application need to be overcome, as variations observed in field performance, and the constraints found during registration of market products, due to some opportunistic human pathogenic Pseudomonas that have been reported. The development of suitable formulations for bacterial delivery, genetic modification of promising strains, and coinoculation with other plant growth-promoting microorganisms are discussed as potential ways of strengthening the use of Pseudomonas spp. in agricultural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adesemoye AO, Egamberdieva D (2013) Beneficial effects of plant growth-promoting rhizobacteria on improved crop production: prospects for developing economies. In: Maheshwari D, Saraf M, Aeron A (eds) Bacteria in agrobiology: crop productivity. Springer, Berlin, pp 45–63

    Chapter  Google Scholar 

  • Agaras B, Wall LG, Valverde C (2012) Specific enumeration and analysis of the community structure of culturable pseudomonads in agricultural soils under no-till management in Argentina. Appl Soil Ecol 61:305–319

    Article  Google Scholar 

  • Alizadeh O, Azarpanah A, Ariana L (2013) Induction and modulation of resistance in crop plants against disease by bioagent fungi (arbuscular mycorrhiza) and hormonal elicitors and plant growth promoting bacteria. Int J Fat Allied Sci 2(22):982–998

    Google Scholar 

  • Amein T, Amein T, Wright SA, Wikström M, Koch E, Schmitt A, Stephan D, Jahn M, Tinivella F, Gullino ML, Forsberg G, Werner S, van der Wolf J, Groot SPC (2011) Evaluation of non-chemical seed treatment methods for control of Alternaria brassicicola on cabbage seeds. J Plant Dis Prot 118(6):214–221

    Article  Google Scholar 

  • Arseneault T, Goyer C, Filion M (2013) Phenazine production by Pseudomonas sp. LBUM223 contributes to the biological control of potato common scab. Phytopathology 103:995–1000

    Article  CAS  PubMed  Google Scholar 

  • Arseneault T, Goyer C, Filion M (2015) Pseudomonas fluorescens LBUM223 increases potato yield and reduces common scab symptoms in the field. Phytopathology 105:1311–1317

    Article  CAS  PubMed  Google Scholar 

  • Athukorala SNP, Fernando WGD, Rashid KY (2010) The role of volatile and non-volatile antibiotics produced by Pseudomonas chlororaphis strain PA23 in its root colonization and control of Sclerotinia sclerotiorum. Biocontrol Sci Tech 20(8):875–890

    Article  Google Scholar 

  • Audenaert K, Pattery T, Cornelis P, Höfte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol Plant-Microbe Interact 15(11):1147–1156

    Article  CAS  PubMed  Google Scholar 

  • Awasthi R, Tewari R, Nayyar H (2011) Synergy between plants and P-solubilizing microbes in soils: effects on growth and physiology of crops. Int Res J Microbiol 2(12):484–503

    Google Scholar 

  • Bagnasco P, De La Fuente L, Gualtieri G, Noya F, Arias A (1998) Fluorescent Pseudomonas spp. as biocontrol agents against forage legume root pathogenic fungi. Soil Biol Biochem 30(10–11):1317–1322

    Article  CAS  Google Scholar 

  • Bajsa N, Morel MA, Braña V, Castro-Sowinski S (2013) The effect of agricultural practices on resident soil microbial communities: focus on biocontrol and biofertilization. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere, vol 2. Wiley Blackwell, Hoboken, pp 687–700

    Google Scholar 

  • Bakker PAHM, Doornbos RF, Zamioudis C, Berendsen RL, Pieterse CMJ (2013) Induced systemic resistance and the rhizosphere microbiome. Plant Pathol J 29(2):136–143

    Article  PubMed  PubMed Central  Google Scholar 

  • Bangera MG, Thomashow LS (1996) Characterization of a genomic locus required for the synthesis of the antibiotic 2,4-diacetylphloroglucinol by the biological control agent Pseudomonas fluorescens Q2-87. Mol Plant-Microbe Interact 9(3):83–90

    Article  CAS  PubMed  Google Scholar 

  • Bangera MG, Thomashow LS (1999) Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4- diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. J Bacteriol 181:3155–3163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barreto V, Seldin L, Araujo FFD (2010) Plant growth and health promoting bacteria. Microbiol Monog 18:21–44

    Article  Google Scholar 

  • Behn O (2008) Influence of Pseudomonas fluorescens and arbuscular mycorrhiza on the growth, yield, quality and resistance of wheat infected with Gaeumannomyces graminis. J Plant Dis Prot 115(1):4–8

    Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84(1):11–18

    Article  CAS  PubMed  Google Scholar 

  • Bettiol W, Morandi MAB, Pinto ZV, de Paula Jr TJ, Corrêa EB, Moura AB, Lucon CMM, Costa JCB, Bezerra JL (2012) Produtos comerciais à base de agentes de biocontrole de doenças de plantas, Jaguariúna, SP: Embrapa Meio Ambiente

    Google Scholar 

  • Blumer C, Haas D (2000) Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch Microbiol 173(3):170–177

    Article  CAS  PubMed  Google Scholar 

  • Bodilis J, Calbrix R, Guérillon J, Mérieau A, Pawlak B, Orange N, Barray S (2004) Phylogenetic relationships between environmental and clinical isolates of Pseudomonas fluorescens and related species deduced from 16S rRNA gene and OprF protein sequences. Syst Appl Microbiol 27(1):93–108

    Article  CAS  PubMed  Google Scholar 

  • Bonfante P, Anca I-A (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383

    Article  CAS  PubMed  Google Scholar 

  • Braun PG, Hildebrand PD, Ells TC, Kobayashi DY (2001) Evidence and characterization of a gene cluster required for the production of viscosin, a lipopeptide biosurfactant, by a strain of Pseudomonas fluorescens. Can J Microbiol 47(4):294–301

    Article  CAS  PubMed  Google Scholar 

  • Buddrus-Schiemann K et al (2010) Root colonization by Pseudomonas sp. DSMZ 13134 and impact on the indigenous rhizosphere bacterial community of Barley. Microb Ecol 60(2):381–393

    Google Scholar 

  • Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53(7):912–918

    Article  CAS  PubMed  Google Scholar 

  • Coates LR (1910) Fertilizer and method of producing same.U.S. Patent No. 947,796. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Collavino MM, Sansberro PA, Mroginski L a, Aguilar OM (2010) Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biol Fertil Soils 46(7):727–738

    Article  Google Scholar 

  • Cook RJ, Bruckart WL, Coulson JR, Goettel MS, Humber RA, Lumsden RD, Maddox JV, Mcmanus ML, Moore L, Meyer SF, Quimby Jr PC, Stack JP, Vaughn JL (1996) Safety of microorganisms intended for pest and plant disease control: a framework for scientific evaluation. Biol Control 7(3):333–351

    Article  Google Scholar 

  • Dalmastri C, Chiarini L, Cantale C, Bevivino A, Tabacchioni S (1999) Soil type and maize cultivar affect the genetic diversity of maize root-associated Burkholderia cepacia populations. Microb Ecol 38:273–284

    Google Scholar 

  • Date R (2001) Advances in inoculant technology: a brief review. Aust J Exp Agric 41:321–325

    Article  CAS  Google Scholar 

  • De Bruijn I, de Kock MJD, Yang M, de Waard P, van Beek TA, Raaijmakers JM (2007) Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol Microbiol 63(2):417–428

    Article  CAS  PubMed  Google Scholar 

  • De Bruijn I, de Kock MJD, de Waard P, van Beek TA, Raaijmakers JM (2008) Massetolide a biosynthesis in Pseudomonas fluorescens. J Bacteriol 190(8):2777–2789

    Article  CAS  PubMed  Google Scholar 

  • De La Fuente L, Quagliotto L, Bajsa N, Fabiano E, Altier N (2002) Inoculation with Pseudomonas fluorescens biocontrol strains does not affect the symbiosis between rhizobia and forage legumes. Soil Biology and Biochemistry 34:545–548

    Google Scholar 

  • De La Fuente L, Thomashow L, Weller D, Bajsa N, Quagliotto L, Chernin L, Arias A (2004) Pseudomonas fluorescens UP61 isolated from birdsfoot trefoil rhizosphere produces multiple antibiotics and exerts a broad spectrum of biocontrol activity. Eur J Plant Pathol 110(7):671–681

    Article  Google Scholar 

  • de Werra P, Péchy-Tarr M, Keel C, Maurhofer M (2009) Role of gluconic acid production in the regulation of biocontrol traits of Pseudomonas fluorescens CHA0. Appl Environ Microbiol 75(12):4162–4174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157(3):361–379

    Article  CAS  Google Scholar 

  • Dorn B, Musa T, Krebs H, Fried PM, Forrer HR (2007) Control of late blight in organic potato production: evaluation of copper-free preparations under field, growth chamber and laboratory conditions. Eur J Plant Pathol 119(2):217–240

    Google Scholar 

  • Dubeikovsky AN, Mordukhova EA, Kochetkov VV, Boronin AM (1993) Growth promotion of blackcurrant softwood cuttings by recombinant strain Pseudomonas fluorescens BSP53a synthesizing an increased amount of indole-3-acetic acid. Soil Biol Biochem 25(9):1277–1281

    Google Scholar 

  • Duca D, Lorv J, Patten CL, Rose D, Glick BR (2014) Indole-3-acetic acid in plant-microbe interactions. Antonie Van Leeuwenhoek 106(1):85–125

    Article  CAS  PubMed  Google Scholar 

  • Duijff BJ, Bakker PA, Schippers B (1994) Suppression of fusarium wilt of carnation by Pseudomonas putida WCS358 at different levels of disease incidence and iron availability. Biocontrol Sci Tech 4(3):279–288

    Google Scholar 

  • Duponnois R, Kisa M (2006) The possible role of trehalose in the mycorrhiza helper bacterium effect. Can J Bot 84:1005–1008

    Article  Google Scholar 

  • Dwivedi D, Johri BN (2003) Antifungals from fluorescent pseudomonads: biosynthesis and regulation. Curr Sci 85(12):1693–1703

    CAS  Google Scholar 

  • Elbadry M, Taha RM, Eldougdoug KA, Gamal-Eldin H (2006) Induction of systemic resistance in faba bean (Vicia fabaL.) to bean yellow mosaic potyvirus (BYMV) via seed bacterization with plant growth promoting rhizobacteria. J Plant Dis Prot 113(6):247–251

    Google Scholar 

  • Fernandéz C, Juncosa R (2002) Biopesticidas: ¿la agricultura del futuro? Phytoma 141:14–19

    Google Scholar 

  • Fernando WGD, Ramarathnam R, Krishnamoorthy AS, Savchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37(5):955–964

    Article  CAS  Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  CAS  PubMed  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176(1):22–36

    Article  CAS  PubMed  Google Scholar 

  • Gamalero E, Berta G, Massa N, Glick BR, Lingua G (2008) Synergistic interactions between the ACC deaminase-producing bacterium Pseudomonas putida UW4 and the AM fungus Gigaspora rosea positively affect cucumber plant growth. FEMS Microbiol Ecol 64(3):459–467

    Google Scholar 

  • Gao G, Yin D, Chen S, Xia F, Yang J, Li Q, Wang W (2012) Effect of biocontrol agent Pseudomonas fluorescens 2P24 on soil fungal community in cucumber rhizosphere using T-RFLP and DGGE. PLoS ONE 7(2):e31806

    Google Scholar 

  • García de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47(5):404–411

    Article  PubMed  Google Scholar 

  • Gleeson O, O’Gara F, Morrissey JP (2010) The Pseudomonas fluorescens secondary metabolite 2,4 diacetylphloroglucinol impairs mitochondrial function in Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 97(3):261–273

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119(3):329–339

    Article  CAS  Google Scholar 

  • Gross H, Loper JE (2009) Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 26(11):1408–1446

    Article  CAS  PubMed  Google Scholar 

  • Guyer A, DeVrieze M, Bönisch D, Gloor R, Bodenhausen N, Bailly A, Weisskopf L, Musa T (2015) The anti-Phytophthora effect of selected potato-associated Pseudomonas strains: from the laboratory to the field. Front Microbiol 6:1–14

    Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. In: Food security in nutrient-stressed environments: exploiting plants’ genetic capabilities. Springer, Dordrecht, pp 133–143

    Chapter  Google Scholar 

  • Hashizume H, Nishimura Y (2008) Cyclic lipopeptide antibiotics. Stud Nat Prod Chem 35(C):693–751

    Article  CAS  Google Scholar 

  • Hernández-Montiel LG, Rueda-Puente EO, Cordoba-Matson MV, Holguín-Peña JR, Zulueta-Rodríguez R (2013) Mutualistic interaction of rhizobacteria with arbuscular mycorrhizal fungi and its antagonistic effect on Fusarium oxysporum in Carica papaya seedlings. Crop Prot 47:61–66

    Google Scholar 

  • Howell CR, Stipanovic RD (1980) Suppression of Pythium ultimum induced damping off of cotton seedlings by Pseudomonas fluorescens and its antibiotic pyoluteorin. Phytopathology 70(8):712–715

    Article  CAS  Google Scholar 

  • Johnsson L, Hökeberg M, Gerhardson B (1998) Performance of the Pseudomonas chlororaphis biocontrol agent MA 342 against cereal seed-borne diseases in field experiments. Eur J Plant Pathol 104(7):701–711

    Google Scholar 

  • Jourdan E, Henry G, Duby F, Dommes J, Barthélemy JP, Thonart P, Ongena M (2009) Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol Plant-Microbe Interact 22(4):456–468

    Article  CAS  PubMed  Google Scholar 

  • Kai M, Effmert U, Berg G, Piechulla B (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch Microbiol 187(5):351–360

    Article  CAS  PubMed  Google Scholar 

  • Kamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol 7(11):1809–1817

    Article  CAS  PubMed  Google Scholar 

  • Kamilova F, Kravchenko LV, Shaposhnikov AI, Azarova T, Makarova N, Lugtenberg B (2006) Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant-Microbe Interact 19(3):250–256

    Article  CAS  PubMed  Google Scholar 

  • Kang SM, Radhakrishnan R, Khan AL, Kim MJ, Park JM, Kim BR, Shin D-H, Lee IJ (2014) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2- 3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem 84:115–124

    Google Scholar 

  • Keel C, Weller DM, Natsch A, Défago G, Cook RJ, Thomashow LS (1996) Conservation of the 2, 4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations. Appl Environ Microbiol 62(2):552–563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96(3):473–480

    Article  CAS  PubMed  Google Scholar 

  • Klee HJ, Hayford MB, Kretzmer KA, Barry GF, Kishore GM (1991) Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell 3(11):1187–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schrotht MN (1980) Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr Microbiol 4:317–320

    Google Scholar 

  • Kuiper I, Lagendijk EL, Pickford R, Derrick JP, Lamers GEM, Thomas-Oates JE, Lugtenberg BJJ, Bloemberg GV (2004) Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol Microbiol 51(1):97–113

    Google Scholar 

  • Labbé JL, Weston DJ, Dunkirk N, Pelletier DA, Tuskan GA (2014) Newly identified helper bacteria stimulate ectomycorrhizal formation in Populus. Front Plant Sci 5:579

    Google Scholar 

  • Leeman M, Van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995) Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85(9):1021–1027

    Google Scholar 

  • Liu L, Kloepper W, Tuzun S (1995) Induction of systemic resistance in cucumber against Fusarium wilt by plant growth-promoting rhizobacteria. Phytopathology 85:695–698

    Article  Google Scholar 

  • Loper JE, Gross H (2007) Genomic analysis of antifungal metabolite production by Pseudomonas fluorescens Pf-5. Eur J Plant Pathol 119(3):265–278

    Article  CAS  Google Scholar 

  • Loper JE, Henkels MD (1999) Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl Environ Microbiol 65(12):5357–5363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mark GL, Morrissey JP, Higgins P, O’Gara F (2006) Molecular-based strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications. FEMS Microbiol Ecol 56(2):167–177

    Google Scholar 

  • Mathre D, Cook R, Callan N (1999) From discovery to use: traversing the world of commercializing biocontrol agents for plant disease control. Plant Dis 83(11):972–983

    Article  Google Scholar 

  • Maurhofer M, Hase C, Meuwly J, Métraux P, Défago G (1994) Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA 0: influence of the gacA gene and of pyoverdine production. Phytopathology 84(2):139–146

    Article  CAS  Google Scholar 

  • Mavrodi DV, Blankenfeldt W, Thomashow LS (2006) Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 44:417–445

    Article  CAS  PubMed  Google Scholar 

  • Mavrodi DV, Mavrodi OV, Parejko JA, Bonsall RF, Kwak YS, Paulitz TC et al (2012) Accumulation of the antibiotic phenazine-1- carboxylic acid in the rhizosphere of dryland cereals. Appl Environ Microbiol 78:804–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mavrodi DV, Parejko JA, Mavrodi OV, Kwak Y-S, Weller DM, Blankenfeldt W, Thomashow LS (2013) Recent insights into the diversity, frequency and ecological roles of phenazines in fluorescent Pseudomonas spp. Environ Microbiol 15(3):675–686

    Google Scholar 

  • Meyer JA, Abdallah MA (1978) The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. J Gen Microbiol 107(2):319–328

    Article  CAS  Google Scholar 

  • Meziane H, van der Sluis I, van Loon LC, Hofte M, Bakker PAHM (2005) Determinants of Pseudomonas putida WCS358 involved in inducing. Mol Plant Pathol 6(2):177–185

    Google Scholar 

  • Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71(3):413–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohr TJ, Liu H, Yan S, Morris CE, Castillo JA, Jelenska J, Vinatzer BA (2008) Naturally occurring nonpathogenic isolates of the plant pathogen Pseudomonas syringae lack a type III secretion system and effector gene orthologues. J Bacteriol 190(8):2858–2870

    Google Scholar 

  • Mootz HD, Schwarzer D, Marahiel MA (2002) Ways of assembling complex natural products on modular nonribosomal peptide synthetases. Chembiochem 3(6):490–504

    Article  CAS  PubMed  Google Scholar 

  • Morel MA, Castro-Sowinski S (2013) The complex molecular signaling network in microbe–plant interaction. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 169–199

    Chapter  Google Scholar 

  • Morrone D, Chambers J, Lowry L, Kim G, Anterola A, Bender K, Peters RJ (2009) Gibberellin biosynthesis in bacteria: separate ent-copalyl diphosphate and ent-kaurene synthases in Bradyrhizobium japonicum. FEBS Lett 583(2):475–480

    Article  CAS  PubMed  Google Scholar 

  • Naiman AD, Latrónico A, García de Salamone IE (2009) Inoculation of wheat with Azospirillum brasilense and Pseudomonas fluorescens: impact on the production and culturable rhizosphere microflora. Eur J Soil Biol 45(1):44–51

    Google Scholar 

  • Nakkeeran S, Fernando WGD, Siddiqui ZA (2006) Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases. In: PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 257–296

    Chapter  Google Scholar 

  • Nielsen TH, Nybroe O, Koch B, Hansen M (2005) Genes involved in cyclic lipopeptide production are important for seed and straw colonization by Pseudomonas sp. strain DSS73. Am Soc Microbiol 71(7):4112–4116

    CAS  Google Scholar 

  • Nowak-Thompson B, Chaney N, Wing JS, Gould SJ, Lo- per JE (1999) Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bacteriol 181:2166–2174

    Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16(3):115–125

    Article  CAS  PubMed  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14(3):290–295

    Article  CAS  PubMed  Google Scholar 

  • Penrose DM, Moffatt BA, Glick BR (2001) Determination of 1-aminocyclopropane-1-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings. Can J Microbiol 47(1):77–80

    Article  CAS  PubMed  Google Scholar 

  • Pliego C, de Weert S, Lamers G, de Vicente A, Bloemberg G, Cazorla FM, Ramos C (2008) Two similar enhanced root-colonizing Pseudomonas strains differ largely in their colonization strategies of avocado roots and Rosellinia necatrix hyphae. Environ Microbiol 10(12):3295–3304

    Google Scholar 

  • Pliego C, Kamilova F, Lugtenberg B (2011) In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems. Springer, Berlin/Heidelberg, pp 295–343

    Chapter  Google Scholar 

  • Quagliotto L, Azziz G, Bajsa N, Vaz P, Pérez C, Ducamp F, Cadenazzi M, Altier N, Arias A (2009) Three native Pseudomonas fluorescens strains tested under growth chamber and field conditions as biocontrol agents against damping-off in alfalfa. Biol Control 51(1):42–50

    Google Scholar 

  • Raaijmakers JM, Weller DM (1998) Natural plant protection by 2, 4-Diacetylphloroglucinol – producing Pseudomonas spp. in take-all decline soils. Mol Plant Microbe Interact 11(2):144–152

    Google Scholar 

  • Raaijmakers JM, Leeman M, van Oorschot MMP, van der Sluis I, Schippers B, Bakker P (1995) Dose-response relationships in biological control of Fusarium wilt of radish by Pseudomonas spp. Biol Control 85(10):1075–1081

    Google Scholar 

  • Raaijmakers JM, de Bruijn I, de Kock MJD (2006) Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol Plant-Microbe Interact 19(7):699–710

    Google Scholar 

  • Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34(6):1037–1062

    Article  CAS  PubMed  Google Scholar 

  • Remans R, Croonenborghs A, Gutierrez RT, Michiels J, Vanderleyden J (2007) Effects of plant growth-promoting rhizobacteria on nodulation of Phaseolus vulgaris L. are dependent on plant P nutrition. Eur J Plant Pathol 119:341–351

    Article  CAS  Google Scholar 

  • Remans R, Beebe S, Blair M, Manrique G, Tovar E, Rao I, Croonenborghs A, Torres-Gutierrez R, El-Howeity M, Michiels J, Vanderleyden J (2008) Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.). Plant Soil 302(1–2):149–161

    Article  CAS  Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156(3):989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riedlinger J, Schrey SD, Tarkka MT, Hampp R, Kapur M, Fiedler HP (2006) Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505. Appl Environ Microbiol 72(5):3550–3557

    Google Scholar 

  • Roongsawang N, Hase K, Haruki M, Imanaka T, Morikawa M, Kanaya S (2003) Cloning and characterization of the gene cluster encoding arthrofactin synthetase from Pseudomonas sp. MIS38. Chem Biol 10:869–880

    Google Scholar 

  • Ryu C, Farag MA, Hu C, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:1–30

    Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102(5):1283–1292

    Google Scholar 

  • Setten L, Soto G, Mozzicafreddo M, Fox AR, Lisi C, Cuccioloni M, Angeletti M, Pagano E, Díaz-Paleo A, Ayub ND (2013) Engineering Pseudomonas protegens Pf-5 for nitrogen fixation and its application to improve plant growth under nitrogen-deficient conditions. PLoS ONE 8(5):e63666

    Google Scholar 

  • Shang C, Caldwell DE, Huang PM (1996) Bioavailability of organic and inorganic phosphates adsorbed on short-range ordered aluminum precipitate. Microb Ecol 31(1):29–39

    Article  CAS  PubMed  Google Scholar 

  • Tilak KVBR, Ranganayaki N, Manoharachari C (2006) Synergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeon pea (Cajanus cajan). Eur J Soil Sci 57(1):67–71

    Google Scholar 

  • Tinivella F, Hirata LM, Celan MA, Wright SAI, Amein T, Schmitt A, Koch E, van der Wolf JM, Groot SPC, Stephan D, Garibaldi A, Gullino ML (2009) Control of seed-borne pathogens on legumes by microbial and other alternative seed treatments. Eur J Plant Pathol 123(2):139–151

    Google Scholar 

  • Tran H, Ficke A, Asiimwe T, Raaijmakers JM (2007) Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol 175:731–742

    Article  CAS  PubMed  Google Scholar 

  • Trivedi P, Pandey A, Palni LMS (2008) In vitro evaluation of antagonistic properties of Pseudomonas corrugata. Microbiol Res 163(3):329–336

    Article  PubMed  Google Scholar 

  • Troppens DM, Dmitriev RI, Papkovsky DB, O’Gara F, Morrissey JP (2013) Genome-wide investigation of cellular targets and mode of action of the antifungal bacterial metabolite 2,4-diacetylphloroglucinol in Saccharomyces cerevisiae. FEMS Yeast Res 13(3):322–334

    Article  CAS  PubMed  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Pierrat JC, Mustin C, Frey-Klett P (2007) Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73(9):3019–3027

    Google Scholar 

  • van de Mortel JE, Tran H, Govers F, Raaijmakers JM (2009) Cellular responses of the late blight pathogen Phytophthora infestans to cyclic lipopeptide surfactants and their dependence on G proteins. Appl Environ Microbiol 75(15):4950–4957

    Google Scholar 

  • Velivelli SS, Sessitsch A, Prestwich B (2015) The role of microbial inoculants in integrated crop management systems. Potato Res 57(3–4):291–309

    Google Scholar 

  • Viebahn M, Wernars K, Smit E, van Loon LC, DeSantis TZ, Andersen GL, Bakker PAHM (2006) Microbial diversity in wheat rhizosphere as affected by genetically modified Pseudomonas putida WCS358r. IOBC WPRS Bull 29(2):167–172

    Google Scholar 

  • Vijay Krishna Kumar K, Krishnam Raju S, Reddy MS, Kloepper JW, Lawrence KS, Groth DE, Miller ME, Sudini H, Binghai Du (2009) Evaluation of commercially available PGPR for control of rice sheath blight caused by Rhizoctonia solani. J Pure Appl Microbiol 3(2):485–488

    Google Scholar 

  • Voisard C, Keel C, Haas D, Dèfago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8(2):351–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weisbeek PJ, Gerrits H (1999) Iron and biocontrol. In: Stacey G, Keen NT (eds) Plant-microbe interactions. APS Press, St. Paul, pp 4217–4250

    Google Scholar 

  • Weisskopf L (2013) The potential of bacterial volatiles for crop protection against phytopathogenic fungi. In: Méndez-Vilas A (ed) Microbial pathogens and strategies for combating them: science, technology and education. Formatex Research Center, Badajoz, pp 1352–1363

    Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97(2):250–256

    Google Scholar 

  • Weller DM, Mavrodi DV, Van Pelt JA, Pieterse CMJ, Van Loon LC, Bakker PAHM (2012) Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Biol Control 102(4):403–412

    Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52(Spec Issue):487–511

    Article  CAS  PubMed  Google Scholar 

  • Woo SL, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N, Pascale A,Lanzuise S, Manganiello G, Lorito M (2014) Trichoderma-based products and their widespread use in agriculture. Open Mycol J 8(M4):71–126

    Google Scholar 

  • Yan Y, Yang J, Dou Y, Chen M, Ping S, Peng J, Lu W, Zhang W, Yao Z, Li H, Liu W, He S, Geng L, Zhang X, Yang F, Yu H, Zhan Y, Li D, Lin Z, Wang Y, Elmerich C, Lin M, Jin Q (2008) Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc Natl Acad Sci U S A 105(21):7564–7569

    Google Scholar 

  • Yanes ML, De La Fuente L, Altier N, Arias A (2012) Characterization of native fluorescent Pseudomonas isolates associated with alfalfa roots in Uruguayan agroecosystems. Biol Control 63:287–295

    Google Scholar 

  • Zahir ZA, Zafar-ul-Hye M, Sajjad S, Naveed M (2011) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for coinoculation with Rhizobium leguminosarum to improve growth, nodulation, and yield of lentil. Biol Fertil Soils 47(4):457–465

    Google Scholar 

  • Zeller W (2006) Status of biocontrol methods against fire blight. Phytopathol Pol 39:71–78

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Bajsa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Yanes, M.L., Bajsa, N. (2016). Fluorescent Pseudomonas: A Natural Resource from Soil to Enhance Crop Growth and Health. In: Castro-Sowinski, S. (eds) Microbial Models: From Environmental to Industrial Sustainability. Microorganisms for Sustainability, vol 1. Springer, Singapore. https://doi.org/10.1007/978-981-10-2555-6_15

Download citation

Publish with us

Policies and ethics